
P5 Fascicule

Lou Burnard, Sebastian Rahtz

ODD SUBSET

1 Documentation Elements
This chapter describes a module which may be used for the documentation of the XML elements and element
classes which make up any markup scheme, in particular that described by the TEI Guidelines, and also for the
automatic generation of schemas or DTDs conforming to that documentation. It should be used also by those
wishing to customize or modify these Guidelines in a conformant manner, as further described in chapters «MD»
and «CF» and may also be useful in the documentation of any other comparable encoding scheme, even though it
contains some aspects which are specific to the TEI and may not be generally applicable.
An overview of the kind of processing environment envisaged for the module described by this chapter may be
helpful. In the remainder of this chapter we refer to software which provides such as a processing environment
as an ODD processor1. Like any other piece of XML software, an ODD processor may be instantiated in many
ways: the current system uses a number of XSLT stylesheets which are freely available from the TEI, but this
specification makes no particular assumptions about the tools which will be used to provide an ODD processing
environment.
As the name suggests, an ODD processor uses a single XML document to generate multiple outputs. These
outputs will include:

• formal reference documentation for elements, attributes, element classes, patterns etc. like those provided
in 1.4. Element catalogue;

• detailed descriptive documentation, embedding some parts of the formal reference documentation, such as
the tag description lists provided in this and other chapters of these Guidelines;

• declarative code for one or more XML schema languages, specifically Relax NG or W3C Schema.

• declarative code for fragments which can be assembled to make up an XML Document Type Declaration.

The input required to generate these outputs consists of running prose, and special purpose elements documenting
the components (elements, classes, etc.) which are to be documented and also declared in the chosen schema
language. All of this input is encoded in XML using the module defined by this chapter. In order to support
more than one schema language, this module uses a comparatively high level model which can then be mapped by
an ODD processor to the specific constructs appropriate to the schema language in use. Although some modern
schema languages such as RelaxNG or W3Schema natively support self-documentary features of this kind, we
have chosen to retain the ODD model, if only for reasons of compatibility with earlier versions of these Guidelines.
We do however use the ISO standard XML schema language RelaxNG (http://www.relaxng.org) as a means
of declaring content models, rather than inventing a completely new XML-based representation for them.
In the TEI abstract model, a markup scheme (a schema) consists of a number of discrete modules, which can be
combined more or less as required. Each major chapter of these Guidelines defines a distinct module. Each module
declares a number of elements specific to that module, and may also populate particular classes. All classes are
declared globally, but particular modules extend the range of elements and attributes available by adding new
members to existing classes of elements, or by defining new classes. Modules can also declare particular patterns,
which act as short-cuts for commonly used content models or class references.
In the present chapter, we discuss the elements needed to support this system. In addition, section 1.1.1. Phrase
level documentary elements discusses some general purpose elements which may be useful in any kind of technical
documentation, wherever there is need to talk about technical features of an XML encoding such as element names
and attributes. Section 1.1.2. Modules and schemas discusses the elements which are used to document XML
modules and their high level components. Section 1.1.3. Specification elements discusses the elements which
document specific XML elements and their attributes, element classes, and generic patterns or macros. Finally,
section 1.1.5. Formal declaration gives an overview of the whole module.

1.1 Phrase level documentary elements
1.1.1 Phrase level terms

In any kind of technical documentation, the following phrase-level elements may be found useful for marking up
parts of a markup language or other formal language when these occur within the body of running text.

1ODD is short for ‘One Document Does it all’, and was the name invented by the original TEI Editors for the predecessor of the system
currently used for this purpose. See further Rahtz et al 2002

1

http://www.relaxng.org

P5 Fascicule

• <att> contains the name of an attribute appearing within running text.

scheme supplies the name of the scheme in which this name is defined. Sample values include:

TEI this element is part of the TEI scheme.
DBK this element is part of the Docbook scheme.

• <code> contains literal code

type the language of the code

• <eg> contains a single example demonstrating the use of an element or attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <egXML> contains a single example demonstrating the use of an XML element or attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <gi> contains the name (generic identifier) of an element.

scheme supplies the name of the scheme in which this name is defined. Sample values include:

TEI this element is part of the TEI scheme.
DBK this element is part of the Docbook scheme.

• <tag> contains text of a complete start- or end-tag, possibly including attribute specifications, but excluding
the opening and closing markup delimiter characters.

scheme supplies the name of the scheme in which this name is defined. Legal values are:

TEI this element is part of the TEI scheme.
DBK this element is part of the Docbook scheme.

• <val> contains a single attribute value.

– No attributes other than those globally available (see definition for tei.global.attributes)

As an example of the recommended use of these elements, we quote from an imaginary TEI working paper:

Example 1.1
1 <p>The <gi>gi</gi> element is used to tag
2 element names when they appear in the text; the
3 <gi>tag</gi> element however is used to show how a tag as
4 such might appear. So one might talk of an occurrence of the
5 <gi>blort</gi> element which had been tagged
6 <tag>blort type=’runcible’</tag>. The
7 <att>type</att> attribute may take any name token as
8 value; the default value is <val>spqr</val>, in memory of
9 its creator.</p>

The <code> and <egXML> elements are used to mark strings of formal code, or passages of markup. The first of
these is intended for use in citing brief passages in some formal language such as a programming language, as in
the following example:

Example 1.2
1 <p>If the variable <ident>z</ident> has a value of zero, a statement
2 such as <code>x=y/z</code> will usually cause a fatal error.</p>

If the cited phrase is a mathematical or chemical formula, the more specific <formula> element defined by the
figures module («FTFOR») may be more appropriate.
The <eg> element may be used to enclose any kind of example, which will typically be rendered as a distinct
block, possibly using particular formatting conventions, when the document is processed. It is a specialised form
of the more general <q> element provided by the TEI core module. In documents containing examples of XML
markup, the <egXML> element should be used for preference, as further discussed below in «TDEG», since the
content of this element can be checked for well-formedness.
These elements are all members of the class tei.oddPhr, which is turn a member of the general phrase class.
When this module is included in a schema, this class is expanded to include these elements, and they are therefore
available at any point that a phrase level element is available.

2

1.1 Phrase level documentary elements

1.1.2 Element and attribute descriptions

Within the body of a document using this module, the following elements may be used to reference parts of the
specification elements discussed in section 1.1.3. Specification elements, in particular the brief prose descriptions
these provide for elements and attributes.

• <specList> marks where a list of descriptions is to be inserted into the prose documentation.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <specDesc> indicates that a description of the specified element should be included at this point within a
tagList.

key (identifier) supplies the identifier of the documentary element or class for which a description is to be
obtained.

atts (attributes) supplies attribute names for which descriptions should be obtained.

TEI practice requires that a <specList> listing the elements under discussion introduce each subsection of a
module’s documentation. The source for for the present section, for example, begins as follows:

Example 1.3
1 <div3>
2 <head>Element and attribute descriptions</head>
3 <p>Within the body of a document using this module, the following
4 elements may be used to reference parts of the specification elements
5 discussed in section <ptr target="TDcrystals"/>, in particular the
6 brief prose descriptions these provide for elements and attributes.
7 <specList>
8 <specDesc key="specList"/>
9 <specDesc key="specDesc"/>

10 </specList>
11 </p>
12 <p>TEI practice requires that a <gi>specList</gi> listing the elements
13 ...
14 </p><!-- ... -->
15 </div3>

When formatting the <ptr> element in this example, an ODD processor might simply generate the section number
and title of the section referred to, perhaps additionally inserting a link to the section. In a similar way, when
processing the <specDesc> elements, an ODD processor must recover relevant details of the element being
specified (<specList> and <specDesc> in this case) from their associated declaration elements: typically, the
details recovered will include a brief description of the element and its attributes. These, and other data, will be
stored in a specification element elsewhere within the current document, or they may be supplied by the ODD
processor in some other way, for example from a database. For this reason, the link to the required specification
element is always made using a TEI-defined key rather than an XML IDREF value. The ODD processor uses this
key as a means of accessing the specification element required. There is no requirement that this be performed
using the XML ID/IDREF mechanism, but there is an assumption that the identifier be unique.
A <specDesc> generates in the documentation the identifier, and also the contents of the <desc> child of whatever
specification element is indicated by its key attribute, together with any associated attribute list, as in the example
above.

1.1.3 Formal definitions

The elements discussed in this section are formally defined as follows: [1.1] att:

att = element att { att.content, att.attributes }

att.content = text

att.attributes =
tei.global.attributes,
att.attributes.scheme,
[a:defaultValue = "att"] attribute TEIform { text }?,
empty

att.attributes.scheme =

3

P5 Fascicule

[a:defaultValue = "TEI"]
attribute scheme { att.attributes.scheme.content }?

att.attributes.scheme.content = text

tei.oddPhr |= att

code:

code = element code { code.content, code.attributes }

code.content = text

code.attributes =
tei.global.attributes,
code.attributes.type,
[a:defaultValue = "code"] attribute TEIform { text }?,
empty

code.attributes.type = attribute type { code.attributes.type.content }?

code.attributes.type.content = text

tei.oddPhr |= code

eg:

eg = element eg { eg.content, eg.attributes }

eg.content = text

eg.attributes =
tei.global.attributes,
[a:defaultValue = "eg"] attribute TEIform { text }?,
empty

tei.common |= eg
tei.data |= eg

egXML:

egXML = element id2290837:egXML { egXML.content, egXML.attributes }

egXML.content = text

egXML.attributes =
tei.global.attributes,
[a:defaultValue = "egXML"] attribute TEIform { text }?,
empty

tei.common |= egXML
tei.data |= egXML

gi:

gi = element gi { gi.content, gi.attributes }

gi.content = text

gi.attributes =
tei.global.attributes,

4

1.1 Phrase level documentary elements

gi.attributes.scheme,
[a:defaultValue = "gi"] attribute TEIform { text }?,
empty

gi.attributes.scheme =
[a:defaultValue = "TEI"] attribute scheme { gi.attributes.scheme.content }?

gi.attributes.scheme.content = text

tei.oddPhr |= gi

ident:

ident = element ident { ident.content, ident.attributes }

ident.content = text

ident.attributes =
tei.global.attributes,
ident.attributes.type,
[a:defaultValue = "ident"] attribute TEIform { text }?,
empty

ident.attributes.type = attribute type { ident.attributes.type.content }?

ident.attributes.type.content = text

tei.oddPhr |= ident

tag:

tag = element tag { tag.content, tag.attributes }

tag.content = text

tag.attributes =
tei.global.attributes,
tag.attributes.scheme,
[a:defaultValue = "tag"] attribute TEIform { text }?,
empty

tag.attributes.scheme =
[a:defaultValue = "TEI"]
attribute scheme { tag.attributes.scheme.content }?

tag.attributes.scheme.content = text

tei.oddPhr |= tag

val:

val = element val { val.content, val.attributes }

val.content = text

val.attributes =
tei.global.attributes,
[a:defaultValue = "val"] attribute TEIform { text }?,
empty

tei.oddPhr |= val

5

P5 Fascicule

specList:

specList = element specList { specList.content, specList.attributes }

specList.content = specDesc+

specList.attributes =
tei.global.attributes,
[a:defaultValue = "specList"] attribute TEIform { text }?,
empty

tei.oddPhr |= specList

specDesc:

specDesc = element specDesc { specDesc.content, specDesc.attributes }

specDesc.content = empty

specDesc.attributes =
tei.global.attributes,
specDesc.attributes.key,
specDesc.attributes.atts,
[a:defaultValue = "specDesc"] attribute TEIform { text }?,
empty

specDesc.attributes.key = attribute key { specDesc.attributes.key.content }?

specDesc.attributes.key.content = xsd:NCName

specDesc.attributes.atts = attribute atts { specDesc.attributes.atts.content }?

specDesc.attributes.atts.content = text

tei.oddPhr |= specDesc

1.2 Modules and schemas
As mentioned above, the primary purpose of this module is to facilitate the documentation of an XML schema
derived from the TEI Guidelines. The following elements are provided for this purpose:

• <schemaSpec> generates a TEI-conformant schema and documentation for it.

type type of schema

start specifies entry points to the schema, i.e. which elements are allowed to be used as the root of
documents conforming to it.

namespace specifies the default namespace (if any) applicable to components of the schema.

• <moduleSpec> documents the structure, content, and purpose of a single module, i.e. a named and
externally visible group of declarations.

type type of module to be generated

• <moduleRef> references a module which is to be incorporated into a schema.

• <specGrp> contains any convenient grouping of specifications for use within the current module.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <specGrpRef> indicates that the declarations contained by the specGrp referenced should be inserted at
this point.

target points at the specification group which logically belongs here.

6

1.2 Modules and schemas

A module is a convenient way of grouping together element and other declarations and associating an externally-
visible name with the group. A specification group performs essentially the same function, but the resulting group
is not accessible outside the scope of the ODD document in which it is defined, whereas a module can be accessed
by name from any TEI schema. Modules, elements and their attributes, element classes, and patterns are all
individually documented using further elements described in section 1.1.3. Specification elements below; part of
that specification includes the name of a module to which the component belongs. An ODD processor generating
XML DTD or schema fragments from a document marked up according to the recommendations of this chapter
will generate such fragments for each <module> element found. For example, the chapter documenting the TEI
module for names and dates contains a module specification like the following:

Example 1.14
1 <moduleSpec id="DND" ident="namesdates">
2 <gloss>Additional tags for names and dates</gloss>
3 </moduleSpec>

together with specifications for all the elements, classes, and patterns which make up that module, expressed using
<elementSpec>, <classSpec> or <patternSpec> elements as appropriate. (These elements are discussed in
section 1.1.3. Specification elements below) Each of those specifications carries a module attribute, the value
of which is namesdates. An ODD processor encountering the <moduleSpec> element above can thus generate
a schema fragment for the TEI namesdates module that includes declarations for all the elements (etc.) which
reference it.
In most realistic applications, it will be desirable to combine more than one module together to form a complete
schema. A schema consists of references to one or more modules or specification groups, and may also contain
explicit declarations or redeclarations of elements (see further 1.1.4. Building a schema). Any combination of
modules can be used to create a schema: the distinction between base and additional tagsets in earlier versions of
the TEI scheme has not been carried forward into P5.
A schema can combine references to TEI modules with references to other (non-TEI) modules using different
namespaces, for example to include mathematical markup expressed using MathML in a TEI document. By
default, the effect of combining modules is to allow all of the components declared by the constituent modules to
coexist (where this is syntactically possible: where it is not — for example, because of name clashes — a schema
cannot be generated). It is also possible to over-ride declarations contained by a module, as further discussed in
section 1.1.4. Building a schema

It is often convenient to describe and operate on sets of declarations smaller than the whole, and to document them
in a specific order: such collections are called specGrps (specification groups). Individual <specGrp> elements
are identified using the global id attribute, and may then be referenced from any point in an ODD document using
the <specGrpRef> element. This is useful if, for example, it is desired to describe particular groups of elements
in a specific sequence. Note however that the order in which element declarations appear within the schema code
generated from a <moduleSpec> element cannot be altered, and is not affected by the order of declarations within
a <specGrp>.
An ODD processor will generate a piece of schema code corresponding with the declarations contained by a
<specGrp> element in the documentation being output, and a cross reference to such a piece of schema code
when processing a <specGrpRef>. For example, if the input text reads

Example 1.15
1 <p>This module contains three red elements:
2 <specGrp id="RED">
3 <elementDecl ident="beetroot"><!-- ... -->
4 </elementDecl>
5 <elementDecl ident="east"><!-- ... -->
6 </elementDecl>
7 <elementDecl ident="rose"><!-- ... -->
8 </elementDecl>
9 </specGrp>

10 and two blue ones:
11 <specGrp id="BLUE">
12 <elementDecl ident="sky"><!-- ... -->
13 </elementDecl>
14 <elementDecl ident="bayou"><!-- ... -->
15 </elementDecl>
16 </specGrp>
17 </p>

then the output documentation will replace the two <specGrp> elements above with a representation of the schema
code declaring the elements <beetroot>, <east>, <rose> and that declaring the elements <sky> and <bayou>
respectively. Similarly, if the input text contains elsewhere a passage such as

7

P5 Fascicule

Example 1.16
1 <div>
2 <head>An overview of the imaginary module</head>
3 <p>The imaginary module contains declarations for coloured things:
4 <specGrpRef target="RED"/>
5 <specGrpRef target="BLUE"/>
6 </p>
7 </div>

then the <specGrpref> elements may be replaced by an appropriate piece of reference text such as ‘The RED
elements were declared in section 4.2 above’, or even by a copy of the relevant declarations. As stated above,
the order of declarations within the imaginary module described above will not be affected in any way. Indeed,
it is possible that the imaginary module will contain declarations not present in any specification group, or that
the specification groups will refer to elements that come from different modules. Specification groups are always
local to the document in which they are defined, and cannot be referenced externally (unlike modules).

1.2.1 DTD specific elements

The following deprecated elements are also currently defined in P5 ODDs for compatability reasons only. They
will be removed as soon as we find out how to do without them when generating SGML dtds.

• <stringVal> contains the intended expansion for the entity documented by an patternSpec element, enclosed
by quotation marks.

– No attributes other than those globally available (see definition for tei.global.attributes)

1.2.2 Formal definitions

The elements discussed in this section are formally defined as follows: [1.2] moduleRef:

moduleRef = element moduleRef { moduleRef.content, moduleRef.attributes }

moduleRef.content = empty

moduleRef.attributes =
tei.global.attributes,
(moduleRef.attributes.key | moduleRef.attributes.url)?,
[a:defaultValue = "moduleRef"] attribute TEIform { text }?,
empty

moduleRef.attributes.key = attribute key { moduleRef.attributes.key.content }

moduleRef.attributes.key.content = xsd:NCName

moduleRef.attributes.url = attribute url { moduleRef.attributes.url.content }

moduleRef.attributes.url.content = xsd:anyURI

tei.oddRef |= moduleRef

moduleSpec:

moduleSpec = element moduleSpec { moduleSpec.content, moduleSpec.attributes }

moduleSpec.content = macro.glossSeq, exemplum*, remarks?, listRef*

moduleSpec.attributes =
tei.global.attributes,
tei.identifiable.attributes,
moduleSpec.attributes.type,
[a:defaultValue = "moduleSpec"] attribute TEIform { text }?,
empty

moduleSpec.attributes.type =

8

1.2 Modules and schemas

attribute type { moduleSpec.attributes.type.content }?

moduleSpec.attributes.type.content = text

tei.oddDecl |= moduleSpec
tei.identifiable |= moduleSpec

schemaSpec:

schemaSpec = element schemaSpec { schemaSpec.content, schemaSpec.attributes }

schemaSpec.content = macro.glossSeq, (moduleRef | specGrpRef | tei.oddDecl)*

schemaSpec.attributes =
tei.global.attributes,
tei.identifiable.attributes,
schemaSpec.attributes.type,
schemaSpec.attributes.start,
schemaSpec.attributes.namespace,
[a:defaultValue = "schemaSpec"] attribute TEIform { text }?,
empty

schemaSpec.attributes.type =
attribute type { schemaSpec.attributes.type.content }?

schemaSpec.attributes.type.content = text

schemaSpec.attributes.start =
[a:defaultValue = "TEI"]
attribute start { schemaSpec.attributes.start.content }?

schemaSpec.attributes.start.content = xsd:NMTOKENS

schemaSpec.attributes.namespace =
[a:defaultValue = "http://www.tei-c.org/ns/1.0"]
attribute namespace { schemaSpec.attributes.namespace.content }?

schemaSpec.attributes.namespace.content = text

tei.oddPhr |= schemaSpec
tei.identifiable |= schemaSpec

specGrp:

specGrp = element specGrp { specGrp.content, specGrp.attributes }

specGrp.content = (tei.oddDecl | tei.oddRef | tei.chunk)*

specGrp.attributes =
tei.global.attributes,
[a:defaultValue = "specGrp"] attribute TEIform { text }?,
empty

tei.oddDecl |= specGrp

specGrpRef:

specGrpRef = element specGrpRef { specGrpRef.content, specGrpRef.attributes }

specGrpRef.content = empty

specGrpRef.attributes =

9

P5 Fascicule

tei.global.attributes,
specGrpRef.attributes.target,
[a:defaultValue = "specGrpRef"] attribute TEIform { text }?,
empty

specGrpRef.attributes.target =
attribute target { specGrpRef.attributes.target.content }

specGrpRef.attributes.target.content = xsd:IDREF

tei.oddRef |= specGrpRef

stringVal:

stringVal = element stringVal { stringVal.content, stringVal.attributes }

stringVal.content = text

stringVal.attributes =
tei.global.attributes,
[a:defaultValue = "stringVal"] attribute TEIform { text }?,
empty

1.3 Specification elements
The following elements are used to specify elements, classes, and patterns for inclusion in a given module:

• <elementSpec> documents the structure, content, and purpose of a single element type.

ns (namespace) specifies the namespace to which this element belongs

usage specifies the optionality of an attribute or element. Legal values are:

req required
mwa mandatory when applicable
rec recommended
rwa recommended when applicable
opt optional

• <classSpec> contains reference information for a TEI element class; that is a group of elements which
appear together in content models, or which share some common attribute, or both.

type indicates whether this is a model class, an attribute class, or both. Legal values are:

model members of this class appear in the same content models
atts members of this class share common attributes
both members of this class share attributes and also appear in the same content models

• <macroSpec> documents the function and implementation of a pattern.

type indicates which type of entity should be generated, when an ODD processor is generating a module
using SGML syntax. Legal values are:

pe parameter entity
epe element parameter entity
ge general entity
dt datatype entity

Unlike most elements in the TEI scheme, each of these elements has a fairly rigid internal structure consisting of
a large number of child elements which are always presented in the same order. For this reason, we refer to them
informally as ‘crystals’. Furthermore, since these elements all describe markup objects in broadly similar ways,
they have several child elements in common. In the remainder of this section, we discuss first the elements which
are common to all the specification elements, and then those which are specific to a particular type.
Specification elements may appear at any point in an ODD document, both between and within paragraphs as
well as inside a <specGrp> element, but the specification element for any particular component may only appear
once (except in the case where a modification is being defined; see further 1.1.4. Building a schema). The order

10

1.3 Specification elements

in which they appear will not affect the order in which they are presented within any schema module generated
from the document. In documentation mode, however, an ODD processor will output the schema declarations
corresponding with a specification element at the point in the text where they are encountered, provided that
they are contained by a <specGrp> element, as discussed in the previous section. An ODD processor will also
associate all declarations found with the nominated module, thus including them within the schema code generated
for that module, and it will also generate a full reference description for the object concerned in a catalogue of
markup objects. These latter two actions always occur irrespective of whether or not the declaration is included in
a <specGrp>.
These elements are formally declared as follows:
[1.3] elementSpec:

elementSpec =
element elementSpec { elementSpec.content, elementSpec.attributes }

elementSpec.content =
macro.glossSeq, classes?, content?, attList?, exemplum*, remarks?, listRef*

elementSpec.attributes =
tei.global.attributes,
tei.identifiable.attributes,
elementSpec.attributes.ns,
elementSpec.attributes.usage,
[a:defaultValue = "elementSpec"] attribute TEIform { text }?,
empty

elementSpec.attributes.ns =
[a:defaultValue = "http://www.tei-c.org/ns/1.0"]
attribute ns { elementSpec.attributes.ns.content }?

elementSpec.attributes.ns.content = text

elementSpec.attributes.usage =
[a:defaultValue = "opt"]
attribute usage { elementSpec.attributes.usage.content }?

elementSpec.attributes.usage.content = "req" | "mwa" | "rec" | "rwa" | "opt"

tei.oddDecl |= elementSpec
tei.identifiable |= elementSpec

classSpec:

classSpec = element classSpec { classSpec.content, classSpec.attributes }

classSpec.content =
macro.glossSeq, classes?, attList?, exemplum*, remarks?, listRef*

classSpec.attributes =
tei.global.attributes,
tei.identifiable.attributes,
classSpec.attributes.type,
[a:defaultValue = "classSpec"] attribute TEIform { text }?,
empty

classSpec.attributes.type =
attribute type { classSpec.attributes.type.content }

classSpec.attributes.type.content = "model" | "atts" | "both"

tei.oddDecl |= classSpec
tei.identifiable |= classSpec

macroSpec:

11

P5 Fascicule

macroSpec = element macroSpec { macroSpec.content, macroSpec.attributes }

macroSpec.content =
macro.glossSeq, (stringVal | content)+, exemplum*, remarks?, listRef*

macroSpec.attributes =
tei.global.attributes,
tei.identifiable.attributes,
macroSpec.attributes.type,
[a:defaultValue = "macroSpec"] attribute TEIform { text }?,
empty

macroSpec.attributes.type =
attribute type { macroSpec.attributes.type.content }?

macroSpec.attributes.type.content = "pe" | "epe" | "ge" | "dt"

tei.oddDecl |= macroSpec
tei.identifiable |= macroSpec

1.3.1 Common elements

This section discusses the child elements common to all of the specification elements. These child elements are
used to specify the naming, description, exemplification, and classification of the specification elements.

Description of components

• <remarks> contains any commentary or discussion about the usage of an element, attribute, class, or entity
not otherwise documented within the containing element.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <listRef> supplies a list of significant references to places where this element is discussed, in the current
document or elsewhere.

– No attributes other than those globally available (see definition for tei.global.attributes)

A <desc> element is used to provide a brief characterization of the intended function of the element, class, value
etc. being documented.
The <remarks> element contains any additional commentary about how the item concerned may be used,
details of implementation-related issues, suggestions for other ways of treating related information etc., as in
the following example:

Example 1.24
1 <elementSpec module="core" ident="foreign"><!--... --><remarks>
2 <p>This element is intended for use only where no other element
3 is available to mark the phrase or words concerned. The global
4 <att>xml:lang</att> attribute should be used in preference to this element
5 where it is intended to mark the language of the whole of some text
6 element.</p>
7 <p>The <gi>distinct</gi> element may be used to identify phrases
8 belonging to sublanguages or registers not generally regarded as true
9 languages.</p>

10 </remarks><!--... -->
11 </elementSpec>

A specification element will usually conclude with a list of references, each tagged using the standard <ptr>
or <xptr> elements, and grouped together into a <listRef> element: in the case of the <foreign> element
discussed above, the list is as follows:

Example 1.25
1 <listRef>
2 <ptr target="COHQHF"/>
3 </listRef>

12

1.3 Specification elements

Exemplification of components

• <exemplum> contains a single example demonstrating the use of an element, together with optional
paragraphs of commentary.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <eg> contains a single example demonstrating the use of an element or attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <egXML> contains a single example demonstrating the use of an XML element or attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

The <exemplum> element is used to combine a single illustrative example with an optional paragraph of
commentary following or preceding it. The illustrative example itself may be marked up using either the <eg> or
the <egXML> element.
If an example contains XML markup, it should be marked up using the <egXML> element. In such a case, it will
clearly be necessary to distinguish the markup within the example from the markup of the document itself. In an
XML schema environment, this is easily done by nominating a different name space for the <egXML> element.
For example:

Example 1.26
1 <p>The <gi>term</gi> element may be used
2 to mark any technical term, thus :
3 <egXML xmlns="http://www.tei-c.org/ns/Examples">
4 This <term>recursion</term> is
5 giving me a headache.</egXML></p>

Alternatively, the XML tagging within an example may be ‘escaped’, either by using entity references, or by
wrapping the whole example in a CDATA marked section:

Example 1.27
1 <p>The <gi>term</gi> element may be used
2 to mark any technical term, thus :
3 <egXML>
4 This <term>recursion</term> is
5 giving me a headache.</egXML></p>

or, equivalently:

Example 1.28
1 <p>The <gi>term</gi> element may be used
2 to mark any technical term, thus :
3 <egXML><![CDATA[
4 This <term>recursion</term> is
5 giving me a headache.]]><egXML>

If the XML contained in an example is not well-formed then it must either be enclosed in a CDATA marked
section, or ‘escaped’ as above: this applies whether the <eg> or <egXML> is used. If it is well-formed but not
valid, then it should be enclosed in a CDATA marked section within an <egXML>.
An <egXML> element should not be used to tag non-XML examples: the general purpose <eg> or <q> elements
should be used for such purposes.

Classification of components In the TEI scheme elements are assigned to one or more classes, which may
themselves have subclasses. The following elements are used to indicate class membership:

• <classes> specifies all the classes of which the documented element or class is a member or subclass.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <memberOf> specifies class membership of the parent element or class. Selected attributes:

13

P5 Fascicule

key (a name) specifies the identifier for a class of which the documented element or class is a member or
subclass

The <classes> element appears within either the <elementSpec> or <classSpec> element. It specifies the
classes of which the element or class concerned is a member by means of one or more <memberOf> child
elements. Each such element references a class by means of its key attribute. Classes themselves are defined
by the <classSpec> element described in section 1.1.3.4. Element Classes below.
For example, to show that the element <gi> is a member of the class tei.oddPhr, the <elementSpec> which
documents this element contains the following <classes> element:

Example 1.29
1 <classes>
2 <memberOf key="tei.oddPhr"/>
3 </classes>

Formal declarations The elements discussed in this section are formally declared as follows: [1.4] remarks:

remarks = element remarks { remarks.content, remarks.attributes }

remarks.content = macro.componentSeq
remarks.attributes =

tei.global.attributes,
[a:defaultValue = "remarks"] attribute TEIform { text }?,
empty

listRef:

listRef = element listRef { listRef.content, listRef.attributes }

listRef.content = (ptr | xptr)*

listRef.attributes =
tei.global.attributes,
[a:defaultValue = "listRef"] attribute TEIform { text }?,
empty

tei.oddDecl |= listRef

exemplum:

exemplum = element exemplum { exemplum.content, exemplum.attributes }

exemplum.content = p*, (egXML | eg), p*

exemplum.attributes =
tei.global.attributes,
[a:defaultValue = "exemplum"] attribute TEIform { text }?,
empty

classes:

classes = element classes { classes.content, classes.attributes }

classes.content = memberOf*

classes.attributes =
tei.global.attributes,
[a:defaultValue = "classes"] attribute TEIform { text }?,
empty

memberOf:

14

1.3 Specification elements

memberOf = element memberOf { memberOf.content, memberOf.attributes }

memberOf.content = text

memberOf.attributes =
tei.global.attributes,
memberOf.attributes.key,
[a:defaultValue = "memberOf"] attribute TEIform { text }?,
empty

memberOf.attributes.key = attribute key { memberOf.attributes.key.content }?

memberOf.attributes.key.content = xsd:NCName

1.3.2 Element Specifications

The <elementSpec> element is used to document an element type, together with its associated attributes. In
addition to the elements listed above, it may contain the following subcomponents:

• <content> contains the text of a declaration for the schema documented.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <attList> contains documentation for all the attributes associated with this element, as a series of attDef
elements. Selected attributes:

org specifies whether all the attributes in the list are available (org="group") or only one of them
(org="choice")

The content of the element <content> may be expressed in one of two ways. It may use a schema language
of some kind, as defined by a pattern called schemapattern, which is declared in the tagdocs-decl module,
defined by this chapter. Alternatively, the legal content for an element may be fully specified using the <valList>
element, described in 1.1.3.3. Attribute list specification below.
In the case of the TEI Guidelines, element content models are defined using Relax NG patterns, but the user may
over-ride this by redefining this pattern.
Here is a very simple example

Example 1.34
1 <content>
2 <text/>
3 </content>

This content model uses the Relax NG namespace, and will be copied unchanged to the output when Relax NG
schemas are being generated. When an XML DTD is being generated, an equivalent declaration (in this case
(#PCDATA)) will be output.
Here is a more complex example:

Example 1.35
1 <content>
2 <group>
3 <ref name="fileDesc"/>
4 <zeroOrMore>
5 <ref name="tei.header"/>
6 </zeroOrMore>
7 <optional>
8 <ref name="revisionDesc"/>
9 </optional>

10 </group>
11 </content>

This is the content model for the <teiHeader> element, expressed in the Relax NG syntax, which again is
copied unchanged to the output during schema generation. The equivalent DTD notation generated from this is
(fileDesc, (%tei.header;)*, revisionDesc?).

15

P5 Fascicule

The Relax NG language does not formally distinguish element names, class names or macro names: all names are
patterns which are handled in the same way, as the above example shows. Within the TEI scheme, however,
different naming conventions are used to distinguish amongst the objects being named. Unqualified names
(fileDesc, revisionDesc) are always element names. Names prefixed with tei. (e.g. tei.header) are
always class names. In DTD language, element classes are represented by parameter entities (%tei.header; in
the above example) See further «a section of ST we haven’t written yet».

1.3.3 Attribute list specification

The <attList> element is used to document information about a collection of attributes, either within a
<elementSpec>, or within a <classSpec>. An attribute list can be organized either as a group of attribute
definitions, all of which are understood to be available, or as a choice of attribute definitions, of which only one is
understood to be available. An attribute list may also contain nested attribute lists.
The <attDef> element is used to document a single attribute, using an appropriate selection from the common
elements already mentioned and the following which are specific to attributes:

• <attDef> contains the definition of a single attribute. Selected attributes:

usage specifies the optionality of an attribute or element.

• <datatype> specifies the declared value for an attribute, by referring to any datatype defined by the chosen
schema language.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <defaultVal> specifies the default declared value for an attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <valDesc> specifies any semantic or syntactic constraint on the value that an attribute may take, additional
to the information carried by the datatype element.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <valList> contains one or more valItem elements defining possible values for an attribute.

type specifies the extensibility of the list of attribute values specified. Legal values are:

closed only the values specified are permitted.
semi all the values specified should be supported, but other values are legal and software should have

appropriate fallback processing for them.
open the values specified are sample values only.

• <valItem> contains a single value and gloss pair for an attribute.

– No attributes other than those globally available (see definition for tei.global.attributes)

The <attList> within a <elementSpec> is used to specify only the attributes which are specific to that particular
element. Instances of the element may carry other attributes which are declared by the classes of which the element
is a member. These extra attributes, which are shared by other elements, or by all elements, are specified by an
<attList> contained within a <classSpec> element, as described in section 1.1.3.4. Element Classes below.

Datatypes The <datatype> element is used to state what kind of value an attribute may have, using whatever
facilities are provided by the underlying schema language. For the TEI scheme, expressed in relaxNG, elements
from the Relax NG namespace may be used, for example

Example 1.36
1 <datatype>
2 <text/>
3 </datatype>

permits any string of Unicode characters not containing markup, and is thus the equivalent of CDATA in DTD
language.
The Relax NG language also provides support for a number of primitive datatypes which may be specified here,
using the <rng:data> element: thus one may write

Example 1.37
1 <datatype>
2 <data type="Boolean"/>
3 </datatype>

16

1.3 Specification elements

to specify that an element or attribute’s contents should conform to the W3C definition for Boolean.
Although only one child element may be given, this might be a selector such as rng:choice to indicate multiple
possibilities:

Example 1.38
1 <datatype>
2 <choice>
3 <data type="Date"/>
4 <data type="Float"/>
5 </choice>
6 </datatype>

which would permit either a date or a real number. In fact, the child element might be a rng:list element to
indicate that a sequence of values is required, a rng:param element to specify a regular expression, or even a list
of explicit rng:values. Such usages are permitted by the scheme documented here, but are not recommended
when it is desired to remain independent of a particular schema language, since the full generality of one schema
language cannot readily be converted to that of another. In the TEI abstract model, datatyping should preferably
be carried out either by explicit enumeration of permitted values (using the TEI-specific <valList> element
described below), or by definition of an explicit pattern, using the TEI-specific <macroSpec> element.

Value specification The <valDesc> element may be used to specify additional constraints on data content in
an informal way: for example

Example 1.39
1 <valDesc>must point to another <gi>align</gi>
2 element logically preceding this
3 one.</valDesc>
4 <valDesc>Values should be Library of Congress subject
5 headings.</valDesc>
6 <valDesc>A bookseller’s surname,
7 taken from the list in <bibl>Pollard and Redgrave</bibl>
8 </valDesc>

Alternatively, if a list of suggested or required values can be constructed, it should be supplied using the
<valList> element, as in the following example:

Example 1.40
1 <valList type="closed">
2 <valItem ident="req">
3 <gloss>required</gloss>
4 </valItem>
5 <valItem ident="mwa">
6 <gloss>mandatory when applicable</gloss>
7 </valItem>
8 <valItem ident="rec">
9 <gloss>recommended</gloss>

10 </valItem>
11 <valItem ident="rwa">
12 <gloss>recommended when applicable</gloss>
13 </valItem>
14 <valItem ident="opt">
15 <gloss>optional</gloss>
16 </valItem>
17 </valList>

Since this value list specifies that it is of type closed, only the values enumerated and glossed above are legal.

Examples The following <attList> demonstrates some of the possibilities; for more detailed examples,
consult the tagged version of the reference material in these Guidelines.

Example 1.41
1 <attList>
2 <attDef>
3 <ident>type</ident>
4 <datatype>
5 <text/>

17

P5 Fascicule

6 </datatype>
7 <defaultVal>simple</defaultVal>
8 <valList type="semi">
9 <valItem>

10 <ident>ordered</ident>
11 <gloss>list items are numbered or lettered. </gloss>
12 </valItem>
13 <valItem>
14 <ident>bulleted</ident>
15 <gloss>list items are marked with a bullet or other
16 typographic device. </gloss>
17 </valItem>
18 <valItem>
19 <ident>simple</ident>
20 <gloss>list items are not numbered or bulleted.</gloss>
21 </valItem>
22 <valItem>
23 <ident>gloss</ident>
24 <gloss>each list item glosses some term or
25 concept, which is given by a label element preceding
26 the list item.</gloss>
27 </valItem>
28 </valList>
29 <desc>describes the form of the list.</desc>
30 <remarks>
31 <p>The formal syntax of the element declarations allows
32 <gi>label</gi> tags to be omitted from lists tagged <tag>list
33 type="gloss"</tag>; this is however a semantic error.</p>
34 </remarks>
35 </attDef>
36 </attList>

In the following example, the org attribute is used to indicate that instances of the element concerned may bear
either a bar attribute or a <baz> attribute, but not both. The bax element is always available:

Example 1.42
1 <attList>
2 <attDef ident="bax"><!-- ... -->
3 </attDef>
4 <attList org="choice">
5 <attDef ident="bar"><!-- ... -->
6 </attDef>
7 <attDef ident="baz"><!-- ... -->
8 </attDef>
9 </attList>

10 </attList>

1.3.4 Element Classes

The element <classSpec> is used to document an element class, as defined in section «STEC». It has the
following components, additional to those already mentioned:

• <classSpec> contains reference information for a TEI element class; that is a group of elements which
appear together in content models, or which share some common attribute, or both. Selected attributes:

type indicates whether this is a model class, an attribute class, or both.

• <attList> contains documentation for all the attributes associated with this element, as a series of attDef
elements.

org specifies whether all the attributes in the list are available (org="group") or only one of them
(org="choice") Legal values are:

group grouped
choice alternated

18

1.3 Specification elements

The attribute type is used to distinguish between ‘model’ and ‘attribute’ classes. In the case of attribute classes,
the attributes which define membership in the class are documented by an <attList> element contained within
the <classSpec>. Members of the class documented by a <classSpec> point to it by supplying its identifier
as the value of the key attribute on a <memberOf> element, given as a child of the <classes> element in the
<elementSpec> that defines the element concerned. For example, the <elementSpec> for the element <hi>
contains the following:

Example 1.43
1 <classes>
2 <memberOf key="tei.hqphrase"/>
3 </classes>

which indicates that the <hi> element is a member of the class with identifier tei.phrase. The <classSpec>
documenting this class is as follows:

Example 1.44
1 <classSpec type="model">
2 <ident>tei.hqphrase</ident>
3 <desc>groups phrase-level elements related to highlighting. </desc>
4 <classes>
5 <memberOf key="tei.phrase"/>
6 </classes>
7 </classSpec>

which indicates that the class tei.hqphrase is actually a member (or subclass) of the class tei.phrase.
When a <classSpec> contains an <attList> element, all the members of that class inherit the attributes
specified by it. For example, the class tei.interpret defines a small set of attributes common to all elements which
are members of that class: those attributes are listed by the <attList> element contained by the <classSpec>
for tei.interpret. When processing the documentation elements for elements which are members of that class, an
ODD processor is required to extend the <attList> (or equivalent) for such elements to include any attributes
defined by the <classSpec> elements concerned. There is a single global attribute class, tei.global.

1.3.5 Formal declarations

The elements discussed in this section are formally defined as follows: [1.5] content:

content = element content { content.content, content.attributes }

content.content = schemapattern | valList
content.attributes =

tei.global.attributes,
[a:defaultValue = "content"] attribute TEIform { text }?,
empty

schemapattern:

schemapattern = element * { (attribute * { text } | text | schemapattern)* }

attList:

attList = element attList { attList.content, attList.attributes }

attList.content = (attDef | attList)*

attList.attributes =
tei.global.attributes,
attList.attributes.org,
[a:defaultValue = "attList"] attribute TEIform { text }?,
empty

attList.attributes.org =
[a:defaultValue = "group"]
attribute org { attList.attributes.org.content }?

attList.attributes.org.content = "group" | "choice"

19

P5 Fascicule

attDef:

attDef = element attDef { attDef.content, attDef.attributes }

attDef.content =
macro.glossSeq,
datatype?,
defaultVal?,
(valList | valDesc)?,
exemplum?,
remarks?

attDef.attributes =
tei.global.attributes,
tei.identifiable.attributes,
attDef.attributes.usage,
[a:defaultValue = "attDef"] attribute TEIform { text }?,
empty

attDef.attributes.usage =
[a:defaultValue = "opt"]
attribute usage { attDef.attributes.usage.content }?

attDef.attributes.usage.content = "req" | "mwa" | "rec" | "rwa" | "opt"

tei.identifiable |= attDef

datatype:

datatype = element datatype { datatype.content, datatype.attributes }

datatype.content = schemapattern
datatype.attributes =

tei.global.attributes,
[a:defaultValue = "datatype"] attribute TEIform { text }?,
empty

defaultVal:

defaultVal = element defaultVal { defaultVal.content, defaultVal.attributes }

defaultVal.content = text

defaultVal.attributes =
tei.global.attributes,
[a:defaultValue = "defaultVal"] attribute TEIform { text }?,
empty

valDesc:

valDesc = element valDesc { valDesc.content, valDesc.attributes }

valDesc.content = macro.phraseSeq
valDesc.attributes =

tei.global.attributes,
[a:defaultValue = "valDesc"] attribute TEIform { text }?,
empty

valItem:

valItem = element valItem { valItem.content, valItem.attributes }

20

1.4 Building a schema

valItem.content = macro.glossSeq
valItem.attributes =

tei.global.attributes,
tei.identifiable.attributes,
[a:defaultValue = "valItem"] attribute TEIform { text }?,
empty

tei.identifiable |= valItem

valList:

valList = element valList { valList.content, valList.attributes }

valList.content = valItem+

valList.attributes =
tei.global.attributes,
valList.attributes.type,
[a:defaultValue = "valList"] attribute TEIform { text }?,
empty

valList.attributes.type =
[a:defaultValue = "open"]
attribute type { valList.attributes.type.content }?

valList.attributes.type.content = "closed" | "semi" | "open"

1.3.6 Pattern Documentation

The <macroSpec> element is used to document any other entity not otherwise documented by the elements
described in this chapter. Its chief uses are to provide systematic documentation of the parameter entities used
within TEI DTD fragments and to describe common content models, but it may be used for any purpose. It has
the following components additional to those already introduced:

• <macroSpec> documents the function and implementation of a pattern. Selected attributes:

type indicates which type of entity should be generated, when an ODD processor is generating a module
using SGML syntax.

• <remarks> contains any commentary or discussion about the usage of an element, attribute, class, or entity
not otherwise documented within the containing element.

– No attributes other than those globally available (see definition for tei.global.attributes)

• <stringVal> contains the intended expansion for the entity documented by an patternSpec element, enclosed
by quotation marks.

– No attributes other than those globally available (see definition for tei.global.attributes)

1.4 Building a schema
The specification elements, and several of their children, are all members of the identifiable class, from which
they inherit the following attributes:

• <tei.identifiable> elements which can be referenced by means of a key attribute

ident Supplies the identifier by which this element is referenced.

depend The name of a module on which this object depends.

predeclare Says whether the class should be treated as global, and so needs predefining in the core.

module Supplies the name of the module in which this object is to be defined.

mode specifies the effect of this declaration on its parent module. Values are:

add this declaration is added to the current definitions
delete this declaration and all of its children are removed from the current setup
change this declaration changes the declaration of the same name in the current definition

21

P5 Fascicule

replace this declaration replaces the declaration of the same name in the current definition

These attributes are used by an ODD processor to determine how declarations are to be combined to form a schema
or DTD, as further discussed in this section.
As noted above, a TEI schema is defined by a <schema> element containing an arbitrary mixture of explicit
declarations for objects (i.e. elements, classes, patterns, or macro specifications) and references to other objects
containing such declarations (i.e. references to specification groups, or to modules). A major purpose of this
mechanism is to simplify the process of defining user customizations, by providing a formal method for the user
to combine new declarations with existing ones, or to modify particular parts of existing declarations.
In the simplest case, a user-defined schema might simply combine all the declarations from two nominated
modules:

Example 1.53
1 <schema>
2 <moduleRef name="teistructure"/>
3 <moduleref name="linking"/>
4 </schema>

An ODD processor, given such a document, would combine the declarations which belong to the named modules,
and deliver the result as a schema of the requested type. It might also generate documentation for all and only the
elements declared by those modules.
A schema might also include declarations for new elements, as in the following example:

Example 1.54
1 <schema>
2 <moduleRef name="teiheader"/>
3 <moduleref name="verse"/>
4 <elementSpec ident="soundClip">
5 <classes memberOf="tei.data"/>
6 </elementSpec>
7 </schema>

A declaration for the element <soundClip>, which is not defined in the TEI scheme, will be added to the output
schema. This element will also be added to the existing TEI class tei.data, and will thus be avilable in TEI
conformant documents.
A schema might also include re-declarations of existing elements, as in the following example:

Example 1.55
1 <schema>
2 <moduleRef name="teiheader"/>
3 <moduleref name="teistructure"/>
4 <elementSpec ident="head" mode="change">
5 <content>
6 <text/>
7 </content>
8 </elementSpec>
9 </schema>

The effect of this is to redefine the content model for the element <head> as plain text, by over-riding the
<content> child of the selected <elementSpec>. The attribute specification mode="change" has the effect
of over-riding only those children elements of the <elementSpec> which appear both in the original specification
and in the new specification supplied above: <content> in this example. Note that if the value for mode were
replace, the effect would be to replace all children elements of the original specification with the the children
elements of the new specification, and thus (in this example) to delete all of them except <content>.
A schema may not contain more than two declarations for any given component. The value of the mode attribute
is used to determine exactly how the second declaration (and its constituents) should be combined with the first.
The following table summarizes how a processor should resolve duplicate declarations:

mode value existing
declara-
tion

effect

add no add new declaration to schema; process its children in add mode
add yes raise error
replace no raise error

22

1.5 Formal declaration

replace yes retain existing declaration; process new children in replace mode; ignore existing
children

change no raise error
change yes replace existing declaration; process new children in replace mode; retain existing

(unreplaced) children
delete no remove existing declaration; ignore this declaration and its children
delete yes ignore existing declaration and its children

1.5 Formal declaration
This chapter documents the following two modules
Module Entities for Tag Set Documentation:
Module Elements for Tag Set Documentation:
The elements described in this chapter are all members of one of four classes: oddDecl, oddRef, oddPhr, or
oddPara. These classes are declared along with the other general TEI classes, in the basic structure module
documented in «ST».
In addition, some elements are members of the tei.identifiable class, which is documented in 1.1.4. Building
a schema above, and make use of the schemapattern pattern, which is documented in 1.1.3.2. Element
Specifications above.
The tagdocs module consists of the following specification groups:
[1.6]
« include 1.1 » « include 1.2 » « include 1.3 » « include 1.4 » « include 1.5 »

2 Class catalogue

2.1 tei.identifiable [class]
Description: elements which can be referenced by means of a key attribute
Attributes: (In addition to global attributes)

ident Supplies the identifier by which this element is referenced.

depend The name of a module on which this object depends.

predeclare Says whether the class should be treated as global, and so needs predefining in the core.

module Supplies the name of the module in which this object is to be defined.

mode specifies the effect of this declaration on its parent module. Values are:

add this declaration is added to the current definitions

delete this declaration and all of its children are removed from the current setup

change this declaration changes the declaration of the same name in the current definition

replace this declaration replaces the declaration of the same name in the current definition

ADD means Create me if I dont exist[Process my new children in ADD mode] Raise an error if I do exist and am
identifiable
REPLACE Leave me alone Process my new children in REPLACE mode Dont process my old children
DELETE Don’t process me or my children (any new children supplied are erroneous)
CHANGE Leave me alone and process my old and new children in CHANGE mode
Member of classes (none)
Members: moduleSpec: schemaSpec: elementSpec: classSpec: macroSpec: attDef : valItem

Module: tagdocs-decl

3 Pattern catalogue

4 Element catalogue

4.1 att [element]
Description: (attribute) contains the name of an attribute appearing within running text.
Classes: tei.oddPhr
Declaration:

23

P5 Fascicule

element att { tei.global.attributes, att.attributes.scheme, text }

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

scheme supplies the name of the scheme in which this name is defined. Sample values include:

TEI this element is part of the TEI scheme.

DBK this element is part of the Docbook scheme.

Example:

<p>The TEI defines three <soCalled>global</soCalled> attributes;
their names are <att>id</att>, <att>rend</att> and <att>n</att>.
<att tei="no">type</att> is not among them.</p>

A namespace prefix may be used in order to specify the scheme.
Module: tagdocs

4.2 attDef [element]
Description: (attribute definition) contains the definition of a single attribute.
Classes: tei.identifiable

Declaration:

element attDef
{

tei.global.attributes,
tei.identifiable.attributes,
attDef.attributes.usage,
(

macro.glossSeq,
datatype?,
defaultVal?,
(valList | valDesc)?,
exemplum?,
remarks?

)
}

Attributes: (In addition to global attributes and those inherited from : tei.identifiable)

usage specifies the optionality of an attribute or element. Legal values are:

req required

mwa mandatory when applicable

rec recommended

rwa recommended when applicable

opt optional

Example:

<attDef usage="rec" ident="type">
<desc>specifies a name conventionally used for this

level of subdivision, e.g. <q>act</q>, <q>volume</q>,
<q>book</q>, <q>section</q>, <q>canto</q>, etc.</desc>

</attDef>

Module: tagdocs

24

4.3 attList [element]

4.3 attList [element]
Description: contains documentation for all the attributes associated with this element, as a series of attDef
elements.
Declaration:

element attList
{

tei.global.attributes,
attList.attributes.org,
(attDef | attList)*

}

Attributes: (In addition to global attributes)

org specifies whether all the attributes in the list are available (org="group") or only one of them (org="choice")
Legal values are:

group grouped
choice alternated

Example:

<attList>
<attDef ident="type" usage="opt">
<equiv/>
<datatype>
<text/>

</datatype>
<desc>type of schema</desc>

</attDef>
</attList>

contains a series of <attDef> elements only
Module: tagdocs

4.4 classSpec [element]
Description: contains reference information for a TEI element class; that is a group of elements which appear
together in content models, or which share some common attribute, or both.
Classes: tei.oddDecl: tei.identifiable

Declaration:

element classSpec
{

tei.global.attributes,
tei.identifiable.attributes,
classSpec.attributes.type,
(macro.glossSeq, classes?, attList?, exemplum*, remarks?, listRef*)

}

Attributes: (In addition to global attributes and those inherited from : tei.oddDecl: tei.identifiable)

type indicates whether this is a model class, an attribute class, or both. Legal values are:

model members of this class appear in the same content models
atts members of this class share common attributes
both members of this class share attributes and also appear in the same content models

Example:

<classSpec type="model" id="SEG">
<class>seg</class>
<desc>elements for arbitrary segmentation.</desc>
<ptr target="COSE"/>

</classSpec>

25

P5 Fascicule

Module: tagdocs

4.5 classes [element]
Description: specifies all the classes of which the documented element or class is a member or subclass.
Declaration:

element classes { tei.global.attributes, (memberOf*) }

Attributes: Global attributes only
Example:

<classes>
<memberOf key="tei.hqinter"/>
<memberOf key="tei.declable"/>

</classes>

This <classes> element indicates that the element documented (which may be an element or a class) is a member
of two distinct classes: tei.hqinter and tei.declable.
An empty <classes> element indicates that the element documented is not a member of any class. This should
not generally happen.
Module: tagdocs

4.6 code [element]
Description: contains literal code
Classes: tei.oddPhr
Declaration:

element code { tei.global.attributes, code.attributes.type, text }

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

type the language of the code

Module: tagdocs

4.7 content [element]
Description: (schema declaration) contains the text of a declaration for the schema documented.
Attributes: Global attributes only
Declaration:

element content { tei.global.attributes, (schemapattern | valList) }

Example:

This content model allows either a sequence of paragraphs or a series of msItem elements optionally preceded by
a summary:

<content>
<choice>
<oneOrMore>
<ref name="tei.paragraph"/>

</oneOrMore>
<group>
<optional>
<ref name="summary"/>

</optional>
<oneOrMore>
<ref name="msItem"/>

</oneOrMore>
</group>

</choice>
</content>

26

4.8 datatype [element]

As the example shows, content models in P5 may be expressed using the RelaxNG syntax directly. More exactly,
they are defined using the pattern schemapattern. Alternatively, a content model may be expressed using the
TEI <valList> element.
Module: tagdocs

4.8 datatype [element]
Description: specifies the declared value for an attribute, by referring to any datatype defined by the chosen
schema language.
Declaration:

element datatype { tei.global.attributes, schemapattern }

Attributes: Global attributes only
Example:

<datatype><rng:text/></datatype>

Module: tagdocs

4.9 defaultVal [element]
Description: specifies the default declared value for an attribute.
Attributes: Global attributes only
Declaration:

element defaultVal { tei.global.attributes, text }

Example:

<defaultVal>#IMPLIED</defaultVal>

any legal declared value or TEI-defined keyword
Module: tagdocs

4.10 eg [element]
Description: contains a single example demonstrating the use of an element or attribute.
Attributes: Global attributes only
Classes: tei.common: tei.data
Declaration:

element eg { tei.global.attributes, text }

Example:

<p>The <gi>term</gi> element may be used to mark any
technical term:</p>
<egXML xmlns="http://www.tei-c.org/ns/Examples">This <term>recursion</term> is
giving me a headache.</egXML>

If the example contains SGML or XML markup, either it should be enclosed within a CDATA marked section, or
character entity references must be used to represent the markup delimiters.
Module: tagdocs

4.11 egXML [element]
Description: contains a single example demonstrating the use of an XML element or attribute.
Classes: tei.common: tei.data
Declaration:

27

P5 Fascicule

element egXML { tei.global.attributes, text }

Attributes: Global attributes and those inherited from : tei.common: tei.data
The element’s contents should be marked as belonging to the namespace http://www.tei-c.org/ns/Examples if
they are to be validated; if the contents are not well-formed XML, they must be enclosed in a CDATA marked
section
Module: tagdocs

4.12 elementSpec [element]
Description: documents the structure, content, and purpose of a single element type.
Classes: tei.oddDecl: tei.identifiable

Declaration:

element elementSpec
{

tei.global.attributes,
tei.identifiable.attributes,
elementSpec.attributes.ns,
elementSpec.attributes.usage,
(

macro.glossSeq,
classes?,
content?,
attList?,
exemplum*,
remarks?,
listRef*

)
}

Attributes: (In addition to global attributes and those inherited from : tei.oddDecl: tei.identifiable)

ns (namespace) specifies the namespace to which this element belongs

usage specifies the optionality of an attribute or element. Legal values are:

req required

mwa mandatory when applicable

rec recommended

rwa recommended when applicable

opt optional

Example:

<elementSpec module="tagdocs" id="CODE" usage="mwa" ident="code">
<equiv/>
<gloss/>
<classes>
<memberOf key="tei.oddPhr"/>

</classes>
<content>
<text/>

</content>
<attList>
<attDef ident="type" usage="opt">
<equiv/>
<datatype>
<text/>

</datatype>
<desc>the language of the code</desc>

</attDef>

28

4.13 exemplum [element]

</attList>
<desc>contains literal code</desc>

</elementSpec>

Module: tagdocs

4.13 exemplum [element]
Description: contains a single example demonstrating the use of an element, together with optional paragraphs of
commentary.
Attributes: Global attributes only
Declaration:

element exemplum { tei.global.attributes, (p*, (egXML | eg), p*) }

Example:

<exemplum>
<p>The <gi>name</gi> element can be used for both
personal names and place names:</p>
<egXML xmlns="http://www.tei-c.org/ns/Examples"><![&nil;CDATA[

<q>My dear <name type="person">Mr. Bennet</name>,</q>
said his lady to him one day, <q>have you heard that
<name type="place">Netherfield Park</name> is let
at last?</q>]&nil;]></egXML>

<p>As shown above, the <att>type</att> attribute may be used
to distinguish the one from the other.</p>

</exemplum>

Note that an explicit end-tag must be supplied for the paragraph immediately preceding the <eg> element within
an <exemplum>, to prevent the <eg> from being mistaken for part of the paragraph.
Module: tagdocs

4.14 gi [element]
Description: (generic identifier) contains the name (generic identifier) of an element.
Classes: tei.oddPhr
Declaration:

element gi { tei.global.attributes, gi.attributes.scheme, text }

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

scheme supplies the name of the scheme in which this name is defined. Sample values include:

TEI this element is part of the TEI scheme.

DBK this element is part of the Docbook scheme.

Example:

<p>The
<gi>xhtml:li</gi> element is roughly analagous to the
<gi>item</gi> element, as is the <gi scheme="DBK">listItem</gi> element.</p>

This example shows the use of both a namespace prefix and the schema attribute as alternative ways of indicating
that the gi in question is not a TEI element name: in practice only one method should be adopted.
Module: tagdocs

29

P5 Fascicule

4.15 ident [element]
Description: identifies or names any kind of object
Classes: tei.oddPhr
Declaration:

element ident { tei.global.attributes, ident.attributes.type, text }

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

type supplies a categorization for this identifier, using any convenient typology.

Example:

<ident>profileDesc</ident>

In running prose, this element may be used for any kind of identifier in any formal language.
Module: tagdocs

4.16 listRef [element]
Description: (list of references) supplies a list of significant references to places where this element is discussed,
in the current document or elsewhere.
Classes: tei.oddDecl
Declaration:

element listRef { tei.global.attributes, (ptr | xptr)* }

Attributes: Global attributes and those inherited from : tei.oddDecl
Example:

<listRef><ptr target="Dc12"/>

Module: tagdocs

4.17 macroSpec [element]
Description: documents the function and implementation of a pattern.
Classes: tei.oddDecl: tei.identifiable

Declaration:

element macroSpec
{

tei.global.attributes,
tei.identifiable.attributes,
macroSpec.attributes.type,
(macro.glossSeq, (stringVal | content)+, exemplum*, remarks?, listRef*)

}

Attributes: (In addition to global attributes and those inherited from : tei.oddDecl: tei.identifiable)

type indicates which type of entity should be generated, when an ODD processor is generating a module using
SGML syntax. Legal values are:

pe parameter entity

epe element parameter entity

ge general entity

dt datatype entity

When generating SGML, an ODD processor should use the <ident> and <string> children of this element to
generate an entity declaration of the type indicated by the type attribute. When generating schema, the <ident>
and <schemapattern> children of this element should be used to generate a pattern declaration. ?????
Module: tagdocs

30

4.18 memberOf [element]

4.18 memberOf [element]
Description: specifies class membership of the parent element or class.
Declaration:

element memberOf { tei.global.attributes, memberOf.attributes.key, text }

Attributes: (In addition to global attributes)

key (a name) specifies the identifier for a class of which the documented element or class is a member or subclass

Elements or classes which are members of multiple (unrelated) classes will have more than one <memberOf>
element, grouped by a <classes> element. If an element is a member of a class C1, which is itself a subclass of
a class C2, there is no need to state this, other than in the documentation for class C1.
Any additional comment or explanation of the class membership may be provided as content for this element.
Module: tagdocs

4.19 moduleRef [element]
Description: references a module which is to be incorporated into a schema.
Classes: tei.oddRef
Declaration:

element moduleRef
{

tei.global.attributes,
(moduleRef.attributes.key | moduleRef.attributes.url)?,
empty

}

Attributes: (In addition to global attributes and those inherited from : tei.oddRef)

Choice: key the name of a TEI module
url refers to a non-TEI module by external location

Example:

<moduleRef key="linking"/>

This embeds the linking module.
Modules are identified by the name supplied as value for the ident attribute on the <module> element in which
they are declared. A URI may also be supplied in the case of a non-TEI module.
The effect of this element is to make all the declarations contained by the referenced module available to the
schema being compiled.
Module: tagdocs

4.20 moduleSpec [element]
Description: documents the structure, content, and purpose of a single module, i.e. a named and externally visible
group of declarations.
Classes: tei.oddDecl: tei.identifiable

Declaration:

element moduleSpec
{

tei.global.attributes,
tei.identifiable.attributes,
moduleSpec.attributes.type,
(macro.glossSeq, exemplum*, remarks?, listRef*)

}

Attributes: (In addition to global attributes and those inherited from : tei.oddDecl: tei.identifiable)

type type of module to be generated

Module: tagdocs

31

P5 Fascicule

4.21 remarks [element]
Description: contains any commentary or discussion about the usage of an element, attribute, class, or entity not
otherwise documented within the containing element.
Attributes: Global attributes only
Declaration:

element remarks { tei.global.attributes, macro.componentSeq }

Example:

<remarks>
<p>This element is probably redundant.</p>

</remarks>

Contains at least one paragraph, unless it is empty.
As defined in ODD, must contain paragraphs; should be special.para
Module: tagdocs

4.22 schemaSpec [element]
Description: generates a TEI-conformant schema and documentation for it.
Classes: tei.oddPhr: tei.identifiable

Declaration:

element schemaSpec
{

tei.global.attributes,
tei.identifiable.attributes,
schemaSpec.attributes.type,
schemaSpec.attributes.start,
schemaSpec.attributes.namespace,
(macro.glossSeq, (moduleRef | specGrpRef | tei.oddDecl)*)

}

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr: tei.identifiable)

type type of schema

start specifies entry points to the schema, i.e. which elements are allowed to be used as the root of documents
conforming to it.

namespace specifies the default namespace (if any) applicable to components of the schema.

A schema combines references to modules or specification groups with other atomic declarations. The processing
of a schema element must resolve any conflicts amongst the declarations it contains or references. Different ODD
processors may generate schemas and documentation using different concrete syntaxes.
Module: tagdocs

4.23 specDesc [element]
Description: (Element or class description) indicates that a description of the specified element should be included
at this point within a <tagList>.
Classes: tei.oddPhr
Declaration:

element specDesc
{

tei.global.attributes,
specDesc.attributes.key,
specDesc.attributes.atts,
empty

}

32

4.24 specGrp [element]

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

key (identifier) supplies the identifier of the documentary element or class for which a description is to be
obtained.

atts (attributes) supplies attribute names for which descriptions should be obtained.

Example:

<specDesc key=’orth’ />

It is not required that all attributes defined for an element be included in the taglist at this point. Those that are
appear in an embedded glossary list; any list of values defined for an element is itself further embedded as a list; no
selection among the values is possible. The list of attributes may include some which are inherited by virtue of an
element’s class membership; descriptions for such attributes may also be retrieved using the another <specDesc>,
this time pointing at the relevant class.
Module: tagdocs

4.24 specGrp [element]
Description: (specification group) contains any convenient grouping of specifications for use within the current
module.
Classes: tei.oddDecl
Declaration:

element specGrp
{

tei.global.attributes,
(tei.oddDecl | tei.oddRef | tei.chunk)*

}

Attributes: Global attributes and those inherited from : tei.oddDecl
Example:

<specGrp id="DAILC">
<elementSpec ident="s">
<!-- ... -->
</elementSpec>
<elementSpec ident="cl">
<!-- ... -->
</elementSpec>
<elementSpec ident="w">
<!-- ... -->
</elementSpec>
<elementSpec ident="m">
<!-- ... -->
</elementSpec>
<elementSpec ident="c">
<!-- ... -->
</elementSpec>
</specGrp>

A specification group is referenced by means of its id attribute. The declarations it contains may be included in a
<module> element only by reference (using a <specGrpRef> element): it may not be nested within a <module>
element.
Different ODD processors may generate representations of the specifications contained by a <specGrp> in
different concrete syntaxes. For P5 the intention is to generate modules using both XML and Relax NG, and
to use only the compressed Relax NG syntax to represent them.
Module: tagdocs

33

P5 Fascicule

4.25 specGrpRef [element]
Description: (reference to a specification group) indicates that the declarations contained by the <specGrp>
referenced should be inserted at this point.
Classes: tei.oddRef
Declaration:

element specGrpRef
{

tei.global.attributes,
specGrpRef.attributes.target,
empty

}

Attributes: (In addition to global attributes and those inherited from : tei.oddRef)

target points at the specification group which logically belongs here.

Example:

<p>This part of
the module contains declarations for names of persons, places,
and organisations:
<specGrp>

<specGrpRef target="names.pers"/>
<specGrpRef target="names.place"/>
<specGrpRef target="names.org"/>

</specGrp>
</p><!-- elsewhere --><specGrp id="names.pers"><!--... -->
</specGrp><!-- elsewhere --><specGrp id="names.place"><!--... -->
</specGrp><!-- elsewhere --><specGrp id="names.org"><!--... -->
</specGrp>

In ODD documentation processing, a <specGrpRef> usually produces a comment indicating that a set of
declarations printed in another section will be inserted at this point in the <specGrp> being discussed. In schema
processing, the contents of the specified <specGrp> are made available for inclusion in the generated schema.
The specification group identified by the target attribute must be part of the current ODD document.
Module: tagdocs

4.26 specList [element]
Description: marks where a list of descriptions is to be inserted into the prose documentation.
Classes: tei.oddPhr
Declaration:

element specList { tei.global.attributes, specDesc+ }

Attributes: Global attributes and those inherited from : tei.oddPhr
Example:

<specList>
<specDesc key=’lb’ atts=’ed’/>
<specDesc key=’div’/>
</speclist>

Module: tagdocs

4.27 stringVal [element]
Description: contains the intended expansion for the entity documented by an patternSpec element, enclosed by
quotation marks.
Attributes: Global attributes only
Declaration:

34

4.28 tag [element]

element stringVal { tei.global.attributes, text }

Example:

<stringVal>"the choice of quotes isn’t always unimportant"</stringVal>

Example:

System entities should include the SYSTEM keyword within the content of this element, as shown:

<stringVal>SYSTEM ’teiclasses"’</stringVal>

The content of this element is the replacement text for the named entity, including any keywords, and surrounded
by appropriate quotation marks.
Module: tagdocs

4.28 tag [element]
Description: contains text of a complete start- or end-tag, possibly including attribute specifications, but excluding
the opening and closing markup delimiter characters.
Classes: tei.oddPhr
Declaration:

element tag { tei.global.attributes, tag.attributes.scheme, text }

Attributes: (In addition to global attributes and those inherited from : tei.oddPhr)

scheme supplies the name of the scheme in which this name is defined. Legal values are:

TEI this element is part of the TEI scheme.

DBK this element is part of the Docbook scheme.

Example:

Mark the start of each italicised phrase with a <tag>hi rend="it"</tag>
tag, and its end with a <tag>/hi</tag> tag.

Module: tagdocs

4.29 val [element]
Description: (value) contains a single attribute value.
Attributes: Global attributes only
Classes: tei.oddPhr
Declaration:

element val { tei.global.attributes, text }

Example:

<val>unknown</val>

Module: tagdocs

4.30 valDesc [element]
Description: (value description) specifies any semantic or syntactic constraint on the value that an attribute may
take, additional to the information carried by the datatype element.
Attributes: Global attributes only
Declaration:

35

P5 Fascicule

element valDesc { tei.global.attributes, macro.phraseSeq }

Example:

<valDesc>must point to another <gi>align</gi>
element logically preceding this
one.</valDesc>

Module: tagdocs

4.31 valItem [element]
Description: (value definition) contains a single value and gloss pair for an attribute.
Attributes: Global attributes only
Classes: tei.identifiable

Declaration:

element valItem
{

tei.global.attributes,
tei.identifiable.attributes,
(macro.glossSeq)

}

Example:

<valItem ident="dub">
<altIdent xml:lang="FRA">dou</altIdent>
<equiv name="unknown"/>
<gloss>dubious</gloss>

</valItem>

Module: tagdocs

4.32 valList [element]
Description: (value list) contains one or more <valItem> elements defining possible values for an attribute.
Declaration:

element valList { tei.global.attributes, valList.attributes.type, valItem+ }

Attributes: (In addition to global attributes)

type specifies the extensibility of the list of attribute values specified. Legal values are:

closed only the values specified are permitted.

semi all the values specified should be supported, but other values are legal and software should have
appropriate fallback processing for them.

open the values specified are sample values only.

Example:

<valList type="closed">
<valItem ident="req">
<gloss>required</gloss>

</valItem>
<valItem ident="mwa">
<gloss>mandatory when applicable</gloss>

</valItem>
<valItem ident="rec">
<gloss>recommended</gloss>

36

4.32 valList [element]

</valItem>
<valItem ident="rwa">
<gloss>recommended when applicable</gloss>

</valItem>
<valItem ident="opt">
<gloss>optional</gloss>

</valItem>
</valList>

Module: tagdocs

37

	Documentation Elements
	Phrase level documentary elements
	Phrase level terms
	Element and attribute descriptions
	Formal definitions

	Modules and schemas
	DTD specific elements
	Formal definitions

	Specification elements
	Common elements
	Element Specifications
	Attribute list specification
	Element Classes
	Formal declarations
	Pattern Documentation

	Building a schema
	Formal declaration

	Class catalogue
	tei.identifiable [class]

	Pattern catalogue
	Element catalogue
	att [element]
	attDef [element]
	attList [element]
	classSpec [element]
	classes [element]
	code [element]
	content [element]
	datatype [element]
	defaultVal [element]
	eg [element]
	egXML [element]
	elementSpec [element]
	exemplum [element]
	gi [element]
	ident [element]
	listRef [element]
	macroSpec [element]
	memberOf [element]
	moduleRef [element]
	moduleSpec [element]
	remarks [element]
	schemaSpec [element]
	specDesc [element]
	specGrp [element]
	specGrpRef [element]
	specList [element]
	stringVal [element]
	tag [element]
	val [element]
	valDesc [element]
	valItem [element]
	valList [element]

