Organisation

‘nternationale de ISO TC 37/SC 4 NO33 Rev. 1
normalisation 2003-07-25

Language Resource Management

Descriptors and Mechanisms for Language Resources
File ID SC4N033 doc (479 ko)

SC4N033.pdf (286 ko)

Draft - Language Resource Management - Feature

Title: Structures - Part 1. Feature Structure Representation
Editor(s): Kiyong Lee
Source: WG 1
24610-1
Project number: - This reference will supersede all previous one and remain
attached as working ref along the duration of the project.
Status: CD to be attached to CD ballot
Date: 2003-07-25
Agenda / Action: For transmission to 1ISO SC
References: WG1 N17; WG1 N23; TEI,

Mr. Key-Sun Choi - SC4 Secretary — KORTERM - 373-1
Guseong-dong Y useong-gu - Dagjeon 305-701 - Korea
+82 42 869 35 25 — fax: +82 42 869 87 90 - kschoi @cs.kaist.ac.kr — http://tc37sc4.org

Collated comments for_ SC4 NO33 rev.1 FS.doc - 1/61 - 11/11/03

Collated commentsfor_SC4 N033 rev.1 FS.doc - 2/61 - 11/11/03

L anguage Resour ce M anagement — Feature Structures

Warning
This document is not an SO International Standard. It is distributed for review and comment. It is
subject to change without notice and may not be referred to as an International Standard. Recipients
of this document are invited to submit, with their comments, notification of any relevant patent rights
of which they are aware and to provide supporting documentation.

Copyright notice
This 1SO document is a Draft International Standard and is copyright-protected by 1SO. Except as
permitted under the applicable laws of the user's country, neither this 1SO draft nor any extract from it
may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to 1SO at the address below or 1SO's
member body in the country of the requester.

Copyright Manager
ISO Central Secretariat
1 rue de Varembél211 Geneva 20 Switzerland
Tel. + 41 22 749 0111
Fax + 41 22 749 0947
internet: iso@iso.ch

Reproduction may be subject to royaty payments or a licensing agreement. Violators may be
prosecuted.

Collated commentsfor_SC4 N033 rev.1 FS.doc - 3/61 - 11/11/03

Genera Comments
Hasida:
Semantics (the graph) of feature structure should be made explicit.

XML may be used more straightforwardly to syntactically represent feature structures, with
tags as types and attributes as features. In order to thereby deal with typed feature structures,
XML schema can be extended so asto allow multiple inheritance.

We need some guideline as to what should be attributed to schema validation.
Relation with RDF should be discussed.

In this connection, what we may describe by feature structures should be made explicit, too.
Probably we will not use them for general knowledge representation, though there is no
technical reason preventing us to.

KATS: [We partially agree with Hasida’ s comments: . . . what we may describe by feature structures
should be made explicit, too. Probably we will not use them for general knowledge representation,
though there is no technical reason preventing usto.| Thetitle of the document shows that our feature
structures are used for the purpose of language resource management. Nevertheless, explicit remarks
may be necessary in a concluding section concerning their potential applications.

Lee Gillam:

I'm not certain whether my previous comments made it to the list, but
I've added them in below just in case. They can be summarised by Terry
Langendoen's comment about "the essentials of feature structure analysis
and representation are revealed”. The resulting document can be quite
'steril€e’, but it would be nice to be able to hand it to a software engineer
for implementation, so the more clear the rules and restrictions, the
better.

As Gary Simons notes, the | SO standards process does include a balloting
process, which occurs at various levels for a number of possible
documents. There has, however, been no requirement for areference
implementation such as that needed for, for example, Java Specification
Request. If the operations, notation, semantics are clear, it

should be possible to provide some extent of an implementation, but

not necessarily one that is complete (where does one draw the line
between the representation in XML and the interpreting software? XSLT
isagood case in point).

Collated comments for_ SC4 NO33 rev.1 FS.doc - 4/61 - 11/11/03

Language Resource Management — Feature Structures
Part 1: Feature Structure Representation

Table of Contents

Foreword

Introduction

1 Scope

2 Normative References

3 Terms And Definitions

4 General Characteristics of Feature Structure
*Qverview

4.1 Use of Feature Structures
4.2 Basic Concepts

4.3 Notations

4.3.1 Graph Notation

4.3.2 Matrix Notation

4.4 Shared Feature Structure or Reentrancy
Simons: delete Feature

4.5 List Values

5 Feature-Structure Representation

5.1 Elementary Feature Structures: Features with Binary Values [16.2]
5.2 Feature, Feature-Structure, and Feature-Value Libraries [16.3]
5.3 Symbolic, Numeric, Measurement, Rate, and String Values [16.4]
5.4 Structured Values [16.5]

5.5 Singleton, Set, Bag, and List Collections of Values [16.6]

5.6 Alternative Features and Feature Values [16.7]

5.7 Boolean, Default, and Uncertain Values [16.8]

5.8 Indirect Specification of Values Using the Rel Attribute [16.9]
5.8.1 The Not-Equals Relation [16.9.1]

5.8.2 Other Inequality Relations [16.9.2]

5.8.3 Subsumption and Non-Subsumption Relations [16.9.3]

5.8.4 Relations Holding with Sets, Bags, And Lists [16.9.4]

5.8.5 Varieties of Subsumption and Non-Subsumption [16.9.5]

6 Bibliography

Annex A (non-normative): Examples for Illustration

Collated commentsfor_SC4 N033 rev.1 FS.doc - 5/61 -

11/11/03

Annex B (informative): Basic Operations on Feature Structures

Annex C (normative): Feature Structure DTD

Collated commentsfor_SC4 N033 rev.1 FS.doc - 6/61 - 11/11/03

Foreword
(to befilled in)

Introduction

This standard proposal results from the agreement between the Text Encoding Initiative Consortium
and 1SO committee TC37/SC4 that a joint activity should take place to revise the two existing
chapters on Feature Structures and Feature Structure Declaration in the TEI guidelines. This work
should lead to both a thorough revision of the guidelines and the production of an 1SO standard on
Feature Structure Representation and Declaration.

This standard is organized in two separate main parts. The first one is dedicated to the description of
what feature structures are, providing aformal semantics for these, as well as a reference XML-based
format for exchanging feature structures between applications. The second one describes one possible
way of documenting such structures and expressing constraints on the feature names and feature
values that can contain.

1 Scope

Feature structures are an essential part of many linguistic formalisms as well as an underlying
mechanism for representing the information consumed or produced by and for language engineering
components. This international standard provides a format to represent, store or exchange feature
structures in natural language applications, both for the purpose of annotation or production of
linguistic data. It also provides a computer format to describe the constraints that bear on elementary
features, feature values and combination of features, thus offering means to check the conformance of
afeature structure with regards to a reference specification.

2 Normative references

ISO/IEC 639, Information technology - 1SO 639:1988, Code for the representation of names of
languages.

SO 639-2:1998, Code for the representation of names and languages-part 2:Alpha-3 code.

ISO/IEC 646:1991, Information technology - ISO 7-bit coded character set for information
interchange.

SO 3166-1:1997, Code for the representation of names of countries and their subdivisions - Part 1:
Country codes

SO 8601:1988, Data elements and interchange formats - Information interchange - Representation of
dates and times.

SO 8879:1986 (SGML) as extended by TC2 (ISO/IEC JTC 1/SC 34 N 029:1998-12-06) to allow for
XML.

ISO/IEC 10646-1:2000, Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and basic multilingual plane.

SO 12620, Computer applications in terminology - Data categories.

Erjavec :Lou complains that the TEI is not in the bibliography. But shouldn't it actually be in this
section, as the normative part frequently refersto it?

Also, why is1SO 3166 (names of countries) needed?

Collated commentsfor_SC4 N033 rev.1 FS.doc - 7/61 - 11/11/03

3 Terms and definitions

KATS: The current list of terms listed here is restricted to those in Section 4. It should be augmented
with key terms in other sections, especially Section 5.

attribute

property or qualification of some object being described

Note: it is sometimes called feature in feature structures. It takes a unigue value to form an attribute-
value pair called feature specification that becomes an element of afeature structure.

Simons: "feature” is defined to mean two different things in two successive sentences! The
second | would call a"feature specification”, that is, the association of afeature with a
particular value is a feature specification. It isthen feature specifications (not features) that
make up feature structures.

Erjavec :
attribute: | find the discussion here and elsewhere on the status of "feature" confusing. | think the
term feature should be mentioned only once, and suggested that it be avoided due to its ambiguity.

KATS: We agree with Simons and Erjavec. The ambiguous term “feature” should be
discarded from the main document. Thus, attribute-value pairs should be referred to as feature
specifications.

attribute-value matrix

AVM

a very common notation in a matrix form by which a feature structure consisting of attribute-value
pairsis represented

Note: In this notation, each row represents a sequence of an attribute and its unique value. Its
acronym isavm.

boxed integer

integer in abox like 1 marking structure sharing in afeature structure

Erjavec : boxed integer: | think it should say that it marks s.s. in an AVM, not in afeature-structure.
KATS: We also agree.

compatibility

two feature structures are compatible if and only if none of the attributes that they have in common
has a conflicting value

directed acyclic graph

dag

graph on which each node, except for the terminal ones, points to other nodes or at least one other
node, but it disallows any path that points to itself

Note: A feature structureis often represented by a dag.

Burnard : Talking of DAGs, I'm not sure that this mechanism can or should support cyclic
graphs. Thereisacasua reference to these in footnote 3 which I think needs expansion, or
removal.

Erjavec:

DAGs are of course by definition not cyclical. And FSs are usually DAGs; but there have been some
suggestions that you could use cyclical FSsto model some linguistic phenomena; | think Kaspar and
Rounds, Karttunen, and Krieger wrote about cyclic FSs. App. B aso has abit in cyclic FSs.

Collated comments for_SC4 NO33 rev.1 FS.doc - 8/61 - 11/11/03

empty path

path corresponding to the root node of a graph

empty feature structure

feature structure that has no attribute-value pairs

Note: It isrepresentedas[] and is often called avariable.

feature

attribute or property of an object being described

Note: by taking a unique value for the described object, it constitutes part of afeature structure.
For thisreason, it may often refer to an attribute-value pair, instead of the attribute alone.

Simons: This"Note" isreally defining a different thing, namely, feature specification. | think
that the precision of terminology required in a standard makes it essential that the term
"feature” not be used ambiguoudly.

E.g.

"Number" is afeature

"Number = sg" isafeature specification

And "sg" is a feature value. That is possibly another term that should be added to the
glossary.

feature structure

a set of atribute-value pairs carrying partial information about some object being described by
assigning a value to each of its attributes.

It is thus defined in set-theoretic terms as a partial function from attributes to values. Because of its
mathematical elegance, it is represented in a rooted and directed (acyclic or cyclic) graph. But it
creates some typesetting problems when it getscomplex. Thus, the matrix notation called avm often
replaces the graph notation. See attribute-value matrix.

Simons. These definitions go back and forth between different set of terminologies. More
precisaly, | would think that a feature structure is a set of feature specifications, while an
attribute-value matrix is a set of attribute-value pairs, and there is a formal equivalence
between the two. But it seemsimprecise to mix them in the definitions.

feature structure declaration

sometimes called feature structure description. A feature structure may be described in adeclarative
manner through some description language.

Simons: If "feature structure declaration” is meant to mean the same thing that it doesin TEI
P4, then this definition is not right. An FSD does not describe a feature structure. 1t describes
the set of all valid feature structures.

Collated comments for_ SC4 NO33 rev.1 FS.doc - 9/61 - 11/11/03

identity element

The empty feature structure [] is anidentity element of the operation called unification on feature
structures, since it yields the identical result when unified with any other feature structure just as the
number O isan identity element for the algebraic operation called addition on natural numbers.

graph notation

A rooted and directed labeled graph is often used to represent a feature structure. Each graph
representing a feature structure starts with a single particular node called the root. From the root, at

least one or more arcs labeled with features branch out to other nodes that again represent

appropriate types with their feature structures or terminate as their atomic values.

path

sequence of features that |abel each arc on adescending sequence of arcs from the root

Note: on agraph, for instance, the root may either remain as the empty path without any branching or

may point to other nodes through one or more directedarcs each labeled with afeature.

reentrancy

structure sharing

phenomenon. Through reentrancy, two paths point to the same node on a graph that represents a
feature structure. These paths are then called equivalent. As a result, the two paths leading to that
intersecting node share its features or attribute values. In the avm notation, reentrancy is
conventionally marked by a boxed integer like 3 by tagging it next to the right of the feature structure

or the type name of that node and also at the place of the value being shared by the other path without
copying the shared feature structure.

root
topmost node on a graph or an (upside-down) treethat has no ancestors nor any (preceding) path.

Erjavec:
root: | would delete 'nor any preceding path' as this follows from it not having any ancestors

shared structure

a feature structure with some attributes sharing values. In graph notation, a node to which two paths
merge represents a shared structure. In matrix notation, the shared structure is represented by an
identical boxed integer. See reentrancy.

subsumption
areflexive, symmetric and transitiverelation between two feature structures: a feature structure A is

said to subsume a feature structure B, formally represented as* £ B if A is not more informative
than B, or A contains a subset of the information in B.

Erjavec: subsumption: this is the only entry where a math symbol is given — as they are not used in
TEI part | think it would be best just to remove it (or, otherwise, also introduce it for unification)

tag
boxed integer marking structure sharing.

Simons: Are you sure you want to introduce this term in a standard about an XML encoding
scheme?

Burndard : The draft could point out that the things (very confusingly) called tags in the matrix
representation scheme are equivalent to the |D/IDREF mechanism in XML. It might aso explain why

Collated comments for_SC4 N0O33 rev.1 FS.doc - 10/61 - 11/11/03

the root of an FSin the DAG representation is represented as a type attribute, and so on.

Erjavec :XML. It might also explain why the root of an FSin the DAG

Not really equivalent: coreference means structure sharing so there is no directionality involved like
there is with with ID/IDREF; but, yes, you could model it with symmetric ID/IDREF.

KATS: Thetermtag is used informally in linguistic literature referring to structure sharing.
Nevertheless, its technical use may be redefined.

type

some common feature that classify objects in astructured way. Elements of any domain can be sorted
into types, based on similarities of properties. In linguistics, for instance, features like phrase, word,
pos(parts of speech), noun, and verb are often taken as types.

Simons: I'm not exactly sure what is meant here, but | think it isn't quite right.

Either "phrase” isthe value of atype feature, e.g. "type= phrase" in which case phraseisa
feature value, not afeature.

Or, phrase is afeature and its value is a typed feature structure, e.g. "pharse = [FS of type
phrase]”

In either case, | don't think it isright to say "the feature phrase is taken as atype".
Erjavec:type: "some common feature that * classify"

Erjavec: “typed feature structures”

As for my comments, the biggest misgiving is what do with types/sorts. The TEI has them, but only
as attributes; but types also form hierarchies, and, in some formalisms (like Carpenter) have
associated constraints (introduce attributes).

As Carpenter etc did not exist when the TEI was written, all thisis right now simply ignored. | think
it should be decided whether to a) introduce this extra machinery into the DTD or

b) say in the standard explicitly that type hierarchies and constraints on types are not supported by the
standard.

Follow comments on the current draft;
Introduction:

says that the standard is composed of two main parts - the second on
FSDsis still to come?

KATS: Type may be redefined as below,

type

elements of any collection can be sorted into types, based on similarities of their properties.

In linguistics, for instance, categories like phrase, word, pos(parts of speech), noun, and verb are
often taken as types.

KATS: insert

typed feature structure
feature structure that is labeled by atype.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 11/61 - 11/11/03

typeinheritance hierarchy

types are ordered in some hierarchical order so that objects of a lower type inherit properties of their
super-types. In linguistics, these hierarchies are often used to organize linguistic descriptions,
especialy lexical information.

unification

a binary operation on feature structures that combine two compatible feature structures into one
representing neither more nor less information than is contained in the feature structures being
unified.

Simons:? or "representing exactly all the information”

value
value of afeature in afeature structure may either be atomic or complex. A value is complex if itisa
feature structure itself or alist of values, again either atomic or complex.

Simons: Or should this really be made into two entries, one for "atomic value" and one for
"complex value"?

4 General characteristics of feature structure

Burnard: The general introductory material on feature structuresis useful and informative,
especially for the reader who doesn't know about this particular way of representing
information. However, it seems very strange that the introduction makes no reference at al to
the way in which feature structures may be represented using XML, since that is the topic of
the standard! The comparisons between the matrix and tree notations are very helpful, but
why not extend them to include comparison with the XML notation?

KATS: We agree with Burnard. Adding an addtional section on the XML notation is required.
See below.

Burnard: The introduction also needs a para introducing the idea of feature (etc.) libraries

KATS: We agree with Burnard. The main text of Section 4.8 Type Inheritance may include a
brief introduction to the ideas of feature libraries.

Clergerie:

About FS Lite

The revised draft should show either explicitly or through its structure that there are
several layers of increasing complexity when using the proposed Feature Structure representation
scheme.

For instance, we can identify the following layers:

1. Using untyped feature structures with basic values and no recursion (only need

of fswithout attribute and f with attribute name). This layer should actually

cover most usages where people only want to express a set of basic properties on
objects.

2. Adding disjunctions on values (the other kinds of disjunctions may come later)

3. Adding libraries and compact notations

4. Adding types

5. Adding recursion and reentrency

6. Adding complex grouping (alternatives, bags, lists and sets)

Collated comments for_SC4 N0O33 rev.1 FS.doc - 12/61 - 11/11/03

7. Adding declaration mechanisms
| think the 3 or 4 first layers should cover most common usages.

Overview

A feature structure is a general-purpose data structure that identifies and groups together individual
features, each of which associates a hame with one or more values. Because of the generality of
feature structures, they can be used to represent many different kinds of information. Interrelations
among various pieces of information and their instantiation in markup provide ametalanguage for
representing linguistic content analysis and interpretation. Moreover, this instantiation allows feature
values to be of specific types, and for restrictions to be placed on the values for particular features, by
means of feature system declarations which are discussed in the second part of this standard. Such
restrictions provide the basis for at least partial validation of the feature-structure encodings that are
used. (Seeillustration example in non-normative annex 1).

Elementary Feature Structures: Features with Binary Values introduces thebinary feature values, and

shows how elementary feature structures using features with those values may be constructed;

Feature, Feature-Structure and Feature-Value Libraries introduces the tags that representlibraries of

features, feature structures and feature values, along with methods for pointing at features, feature
structures and feature values in these libraries;

Symbolic, Numeric, Measurement, Rate and String Values, presents the tags for symbolic, numeric,

measurement, rate, and string values;

Structured Values, shows how to use feature-structures themselves as values, thus enabling feature
structures to be recursively defined;

Singleton, Set, Bag and List Collections of Values demonstrates the use of multiple values for
features, for encoding set, bag, and list collections of values;

Alternative Features and Feature Values present various methods for representing alternations
(disiunctions) of features and feature values;

Boolean, Default and Uncertain Values, presents tags for boolean, default, and uncertain values,

along with methods for under specifying feature val ues;

Indirect Specification of Values Using the rel Attribute shows how to specify various logical

relations, such as negation and subsumption, between the expressed values for a feature and its actual
values.

4.1 Use of Feature Structures

Feature structures may be understood as providing partial information about some object described
by specifying values of some of its attributes. Suppose we're describing an employee named Mary

1 An attribute is often called a ‘ feature’. Hence, the term ‘feature’ may refer toan attribute-value pair or and
an attribute only. Its dual usemust be disambiguated by its context.

Collated comments for_SC4 N033 rev.1 FS.doc - 13/61 - 11/11/03

Jones who is 30 years old. We can then talk about at least that person's sex, name and age in a
succinct manner by assigning a value to each of these three attributes of hers. These pieces of
information can be put into asimple set notation, asin:

(1) About an employee
{<SEX, female>, <NAME, Mary Jones>, <AGE, 30>}

The use of feature structures can easily be extended to linguistic descriptions, too. Various
linguistic features of the word ‘love’, for instance, can be described by a feature structure of the
form:

(2) About the word * love’
{<PHON, ‘love’ >, <SYN, {<POS, verb>, <VAL, transitive>}>, <SEM, {<REL, loving}>}.

Here, the attribute rronology takes a word ‘love’ asatomic value, whereas the attributes syntax and
semantics take sets of attribute-value pairs as complex value. The complex feature <syn, <ros, verb>,
<vaL, transitive>>, for instance, consists of an attribute syntax and its value <ros, verb>, <vai,
transitive>> which is itself a feature structure consisting of two attribute-valuepairs. The first type
whose value is atomic is called atomic feature and the second type whose value is a feature structure
complex feature.

Since its first extensive use in generative phonology in mid-60's, a feature structure has become an
essential tool not only for phonology, but also for doing syntax and semantics as well as building
lexicons, especially related to computational work.

4.2 Basic Concepts

Feature structures may be viewed in a variety of ways. The most common and perhaps the most
intuitive way isto view them either as (1) sets of featuresthat consist of pairs of attributes and their
values or (2) labelled directed graphs with a single root where each arc is labelled with an attribute

and directed to its value.

In set-theoretic terms, a feature structure™S can thus be defined as apartial function from attributes
to values or more formally as a sextuple <A, N, r, T,8, &> such that

i. Aisafinite set of attributes.

ii. Nisa(possibly null) set of nodes.

iii. r isaunique member of N called the root.
iv. Tisafinite set of types.

v. Bisafunction that maps nodesN to typesT.

vi. d isapartial function from A x N into N.

This definition is general enough to accommodate typed feature structures each of which is
characterized as being of a particular type or sort. This typing plays a role as constraint on the
construction of appropriate feature structures, when a type inheritance hierarchy is specified. By
defining feature structures with the value assignment function & and also with the typing function 6,
the unique-value restriction is placed on features: each attribute must be assigned only asingle value.

Simons: Ultimately, the solution will aso include alternations. For purposes of this definition,
Is an alternation considered a complex single value?

2 pos stands for part of speech andvaL for valence

Collated comments for_SC4 N0O33 rev.1 FS.doc - 14/61 - 11/11/03

Erjavec: “typed feature structures”

As for my comments, the biggest misgiving is what do with types/sorts. The TEI has them, but only
as attributes; but types also form hierarchies, and, in some formalisms (like Carpenter) have
associated constraints (introduce attributes).

As Carpenter etc did not exist when the TEI was written, all thisis right now simply ignored. | think
it should be decided whether to a) introduce this extra machinery into the DTD or

b) say in the standard explicitly that type hierarchies and constraints on types are not supported by the
standard.

Follow comments on the current draft:
I ntroduction:

says that the standard is composed of two main parts - the second on
FSDsisstill to come?

4.3 Notations

There are again several ways of representing feature structures. There are two most common ways of
representing them: a graph and amatrix notation.

4.3.1 Graph Notation

For conceptual coherence and mathematical elegance, feature structures are often represented as
labelled directed graphs with a single root. The formal definition given earlier can be understood as
specifying rooted, directed and labelled arcs on a graph. The attribute-value functiond labels each arc
from one node n to another noden’ with an attribute name a by mapping a pair (a, n) to the noden’ :

o(a, n)=n’ orn 1N . Thetyping function 6 then maps each node to atype in T, for instance 1

tonandtT ton: B(n)=1,8(n")=1" . Thesetwo can then be combined into the following:

Simons: Isn't this backwards? 1t should be n to tau and n-prime to tau-prime.

@nt mFn:tv

As stated earlier, values can be either atomic or complex. In agraph notation, atomic values are
simple object being represented as terminal nodes. Complex values are, on the other hand, feature

3 This graph can be either (1) acyclic, thus allow ng the acronymdag for
feature structures or (2) cyclic for handling cases like the Liar's

par adox. Burnard : Talking of DAGs, I'm not sure that this mechanism can or should
support cyclic graphs. Thereis a casual reference to these in footnote 3 which | think needs
expansion, or removal.

Erjavec : DAGs are of course by definition not cyclical. And FSs are usually DAGs; but there have
been some suggestions that you could use cyclical FSsto model some linguistic phenomena; | think
Kaspar and Rounds, Karttunen, and Krieger wrote about cyclic FSs. App. B also has abit in cyclic
FSs.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 15/61 - 11/11/03

structures themselves, thus being represented by non-terminal nodes that branch out further to other
arcs. The partial information about the word ‘love’ given in (2) can be represented in a graph
notation as follows:

(4) Feature structure in graph notation

‘“ love

word category<
transitive
content———# |oving

On this graph, each node is labelled with a type. The root node, for instance, is of a word type,
branching out to three nodeswhose types are‘ love’ , category, and content, respectively. Each arcis
also labelled with an appropriate attribute that is called feature. The arc labelled aspHon is directed to
the terminal node ‘ love’ , an atomic value. The other two arcs labelled assvyn and sem further branch
out: one branches out to the two terminal nodes, verb and transitive, through the two arcs labelled as
ros and vaL. The non-terminal node labelled as sem is directed to the node loving through the arc
labelled asreL.

The notion of path is useful for reading branches on agraph. A path is a sequence of arc labels or
attributes. At the root level, the path is an empty sequence. The path from the root to the terminal
node verb in the above graph is a sequence <svn, rpos>. Since every graph representing a well-formed
feature structure is rooted, the root is reachable from any node

4.3.2 Matrix notation

Despite its mathematical elegance, graphs cause problems of typesetting and readability when they
get complex. To remedy some of these problems, feature structures are more often depicted in a
matrix notation called attribute-value matrix, or simply avm. Each feature, or attribute-value pair, in a
feature structure is represented as a row with an attribute followed by its value. Note that a colon or a
little empty space separates an attribute from its value on each row of anavm.

(5) Feature structure in an avm notation

M .l|"|'||l
SURF “love”

caleqory
s¥N | POS verh

VAL transitive
=y
SEM

REL lovinge

This example illustrates a feature structure in matrix notation that consists of an atomic feature and

Collated comments for_SC4 N033 rev.1 FS.doc - 16/61 - 11/11/03

two complex features that take feature structures as their value. The avm as a whole is of type word,
while its constituent avm's are of type cat and content.

4.4 Shared Feature Structure or Reentrancy

Simons: Delete “ Feature”

The graphic notation can clearly represent shared feature values. Consider the following:

(6) Merging paths in graph notation

noun ‘ Mary’
SUBJ AGR
— - SENtENC 3rdSg
PREDIC AG
i
verb “ walks
PHON

Here, the two acr paths merge on the node 3rdSg, indicating these two attributes share one and the
same value.

Such sharing can also be represented in anavw.

SeNLeree
ot
SUBJECT: |PHON: ‘Mary’
Aacr: @ drdSs
verh (7) Shared value in an avm notation
PREDICATE: [PHON: ‘walks’

ACR!:

Collated comments for_SC4 N033 rev.1 FS.doc - 17/61 - 11/11/03

senteriee
ToEn
SUBJECT: |PHON; ‘Mary’
AGR: [3rdSe
verh
PREDICATE: |PHON: ‘walks’
AGR:

The tags can be attached to feature structures, too.

Simons: "index" would be an alternate term that doesn't overlap with XML terminology. In
the next sentence, you could say "tagged with an index to represent value sharing.

The atomic value 3rdSg in the above can be expanded to a feature structure and then this feature
structure can be tagged to represent val ue sharing.

(8) Tagging of afeature structure

_.a't'.'.i Lenee 1
TEOtT
PHON: ‘Mary’

PERSON: Ar-i}

SUBIECT!

ACR: ;
NUMBER: 5g

verh
PREDICATE: |PHON: “walks’
AGR:

Tagging has the same effect as the co-indexing in linguistic analysis. For instance, the coindexed
nouns in ‘Her; mother loves Mary;’ indicate that they are coreferential. This fact can aso be easily
represented in an avm by tagging. Note that the token identity among expressions does not guarantee
the identity of their values, asin‘ Mary's mother loves Mary’.

Erjavec:
"Her *other loves Mary

mother" | guess.

"Note that token identity .. does not guarantee the identity of their values" <- just the opposite, surely!

45List Values

Collated comments for_SC4 N0O33 rev.1 FS.doc - 18/61 - 11/11/03

Burnard : In section 4,5 there is discussion only of simple lists. Since the TEI scheme goes to
some length to distinguish lists, bags, and sets (inter alia), it might be worth mentioning that
not all listsare simple here!

The domain of complex values can be extended to accommodate lists of atomic values or feature
structures as attribute values. The following could be an example:

(9) List asan attribute value

F: =<a. b=
[S [.—h: :-].[]5: i‘-] =S
Note that alist as an attribute value may consist of either atomic or complex values.

List values can also be represented recursively as shown below:

(10)Recursive representation

FIRST: &

ok FIRST: b
REST;)
REST: null

FIRST: {.-"L: :|]

FIRST: [1;: l:ﬂ
REST: J

REST: null

List values are useful for treating complement, valence or argument structuresof predicates in syntax
or semantics. The internal structure of averb ‘loves’ can be represented in more detail asfollows:.

(11) Vaencetaking alist asits value

4 Linguists may not agree on the linguistic descriptions presented here. These are only here for the sake of
illustration.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 19/61 - 11/11/03

waord

rHON: loves'

caf
ros: verb
stihj
SYN: CASE. nom U,l,.J,'
vaL <[i] SLE >
PERSON: Jrd CASED ace
ACR:
NUMBER: sg
TENSE: Present

ronient
REL; <act, loving>

SEM:
inde: indea
ARG < . =

ROLE: agent| |ROLE: patient

This feature structure contains three lists of values: oneis alist of atoms, asin the featurereL: <act,
loving>, while the other two are lists of feature structures, eachrepresenting the valence structure or
the argument structure of the verb ‘loves’. The two elements in these lists are each linked to the
other by tagging.

Erjavec : | would suggest moving Appendix B into end of 4 - it has the same status and it is strange to
have an intro to FSs without mentioning unification, even though the standard itself does not use it.

KATS: We agree with Erjavec.

KATS: add 4.6 Relations on Feature Structures (Subsumption)

KATS: add 4.7 Operations on Feature Structures (Unification and Generalization)
KATS: add 4.8 Type Inheritance

KATS: add 4.9 Semantics of Feature Structures

5 Feature Structure representation

KATS: insert Overview, part of which will be the second paragraph removed from the Overview of
section 4.

Burnard: There are a couple of comments saying that more linguistic examples are needed. There are
quite afew of these in the TEI vault, which | would be willing to dig out and bring up to date with the
current P4 syntax if that would be of use.

Clergerie:

About atomic types.

| don’t believe that a draft about Feature Structures should enumerate alist of atomic
types. Such alist would overlap with specification of atomic types in other place and
would never be complete. For instance, someone may wish at some point to have dates
as atomic type or any kind of formatted strings. XML schema are an alternative where

Collated comments for_SC4 N0O33 rev.1 FS.doc - 20/61 - 11/11/03

atomic types may be defined. The FS draft should rather focus on how to use atomic
types.

Clergerie:
About reentrency
The current draft does not precise how reentrency is handled. One may think that XML
references (through 1Ds) are a solution. However, | am afraid they are not, because of
renaming problems and because of the use of FS libraries. Indeed, the reentrency points
present in several occurrences of a same feature structure (from alibrary) and used in
different places should be considered as distinct.
Xpointer notation seems to be a better alternative.
<fsLib>
<fsid ="fsl" >
<f name="f">< fsid="fs2"></fs></f>
<f name="g">
<fsid ="fs3">
<f name="h" sharing="../../f[@name=f]" />

</fs>
#</fs>
</fsLib>
Notes:
» should look for alinguistic example
* not sure about the best notation (an attributesharing of f) or some new element
inside f
An aternate and more readabl e notation exists, not using Xpointer, is possible.
<fsLib>
<fsid ="fsl" >
<f name="f" var="X"><fsid ="fs2"> . .. < [fs ></f>
<f name="g">
<fsid ="fs3" >
<f name="h" var ="X"/>

<lfs>
</fs>

<ffsLib>
Footnote:
This notation has the advantage of beeing symmetric but says nothing about the

scope of variable X. For smple cases, it may be assumed that it is the topmost feature
structure containing the variable but thisis not afully acceptable answer.

KATS: not sure of the implication or consequences the change might cause if the
suggestion is adopted.

5.1 Elementary Feature Structures. Features with Binary Values[16.2]

Collated comments for_SC4 N0O33 rev.1 FS.doc - 21/61 - 11/11/03

Erjavec :it seems strange to list all possible values of <f> but not to mention
that a <fs> can be avalue aswell.

The fundamental elements of a feature structure system are <f > (for feature) and <f s> (for feature
structure). The <f s> element has at ype attribute for indicating what type of feature structure it
represents, and may contain any number of <f > elements. An <f > element, in turn, has a required
nane attribute and any number of associated values. These may be binary, numeric, symbolic (i.e.
taken from a restricted set of legal values), or string-valued, or may consist of sets, lists, or bags of
binary, numeric, symbolic, or string values. Specialized values may also be given which allow partial

underspecification of the feature. These possible types are al described in more detail in this and the
following sections.

This section considers the special case of feature structures that contain features whose single valueis
one of the binary values represented by the empty elements<pl us> and <m nus>. The elements that

are used for representing feature structures, features and the binary values, along with their
descriptions and attributes, are the following.

« <fs>analyzes acollection of features and feature alternations as a structural unit.

type providesatype for afeature structure.
feats pointer to features.

rel indicates the relation of the given content to the actual content or value of the feature
structure.

- <f> associates a hame with avalue of any of several different types.

name provides aname for afeature.
org indicates organization of given value or values as singleton, set, bag or list.
fVal pointstothei d attributes of feature values.

rel indicates the relation between the values that are given as the content of the feature or
pointed at by thef Val attribute and the actual values of the feature.
» <plus> provides binary plus value for afeature.

No attributes other than those globally available (see definition for a.global)

Simons: | really doubt that we want to carry the set of global attributes from TEI into this
standard.

| find it hard to imagine a circumstance under which <plus> could have any attributes at all.
Even id doesn't make sense. Thereis only one globa concept of "plus’, and each instance of
<plus> is areference to the one global concept.

LeeGillam:

On the subject of ‘plus or 'null’, and other attributes(?) on such
elements (?), perhaps alook to RDF gives a pointer? If 'plus is
defined as a universal concept, would a specific 'plus be an instance
of this? This would seem to make sense from an RDF perspective.

Is'id' then an attribute that has a 'domain’ of ‘element'?

(With a caveat that it is not used on instances of universal concepts)?

On asimilar note, would it make sense to define the 'domain’ of 'lang' as
an element (feature, or feature-structure? | feel ‘element’ and "attribute’
are both unclear at this point), and leave it at that? From a keep-it-simple
perspective, isthere any additional benefit in preventing this

association, or could an implementation not just ignore it? Something

Collated comments for_SC4 N0O33 rev.1 FS.doc - 22/61 - 11/11/03

to spark debate on a Monday!

In reply to this email and another, rather than putting comments through
BSI currently, 1'd prefer to give aview of the document as awhole,
which you have made a good start at bringing into 1SO.

The closest standard | am aware of in relation to it is1SO 11404,
Information technology - Programming languages, their environments and
system software interfaces - Language-independent datatypes. The
relationship is more to do with the way in which certain items have

been described. e.g (although it does not reproduce so well here):

« <minus> provides binary minus value for afeature.

No attributes other than those globally available (see definition for a.global)
The attributes not discussed in this section are discussed in following sections as follows: thef eat s
and the f Val attributes in section 5.2 [16.3] Feature, Feature-Structure and Feature-Value Libraries,
ther el attributein section 5.8 [16.9] Indirect Specification of Values Using the rel Attribute, and the
or g attribute in section 5.5 [16.6] Singleton, Set, Bag and List Collections of Values.
An <f s> element containing <f > elements with binary values can be straightforwardly used to
encode the matrices of feature-value specifications for phonetic segments, such as the following for
the English segment [].
+--- S
+ consonant al
- vocalic |
- voi ced |
+ anterior |
+ coronal |
+ conti nuant |
+ strident |
+--- S
Using the additional tag set for feature structures, this might be encoded as follows. Note that <f s>
elements may have at ype attribute indicating the kind of feature structure in question.

<fs type="phonol ogi cal segnent">
<f nanme="consonantal "> <plus/> </f>

<f name="vocalic"> <m nus/> </f>

<f nane="voi ced"> <m nus/> </f>

<f name="anterior"> <plus/> </f>

<f name="coronal "> <plus/> </f>

<f name="continuant"> <plus/> </f>

<f name="strident"> <plus/> </f>
</fs>

The restriction of specific features to specific types of values (e.g. the restriction of the feature
“strident’ to the values <pl us/ > or <mi nus/ >) cannot be validated by a generic XML parser (though
other validation mechanisms such as XML Schemas do provide such capabilities). To enable an
application program to check that only legal values for particular features appear, one may write a
feature-system declaration, as described in section 6 (Feature System Declaration representation).

5.2 Feature, Feature-Structure and Feature-Value Libraries[16.3]

As the example in the preceding section illustrates, the direct encoding of features structures can be
verbose. Consequently, the effort of encoding large numbers of feature structures in this manner
could be enormous, and could result in the creation of enormous files. To reduce the size and
complexity of the task of encoding feature structures, one may use thef eat s attribute of the <f s>

Collated comments for_SC4 N0O33 rev.1 FS.doc - 23/61 - 11/11/03

element to point to one or more of the features of that element. This indirect method of encoding
feature structures presumes that the <f > elements are assigned uniquei d values, and are collected
together in <f Li b> elements (feature libraries). In turn, feature structures can be collected together
in <f sLi b> elements (feature-structure libraries). Finally, one may use thef Val attribute of the <f >

element to point to its values. Thisindirect method of encoding feature values presumes that the value
elements are assigned i d specifications, and are collected together in <f vLi b> elements (feature-

value libraries). The elements which are used for representing feature, feature-structure and feature-
value libraries, along with their descriptions and attributes, are the following.

» <fLib> assembleslibrary of feature elements.

type indicates type of feature library (i.e., what kind of features it contains).
Simons:. <fs> has aformally defined type attribute, and the formal definition of feature
structures in section 4 provides aformal definition of type for feature structures, thus the
"type" attribute on fsLib has ameaningful definition that is consistent with everything that has
preceded.

But what does "type" mean in reference to an <f> or to afeature value that is not an <fs>? If
it means anything, it does not mean the same thing is what has been formally defined as type,
thus the "type" attribute should not be used.

- <fsLib> assembleslibrary of feature structure elements.

type indicates type of feature-structure library (i.e., what type of feature structures it
contains).
« <fvLib> assembles library of feature value elements.

type indicates type of feature-value library (i.e., what type of feature values it contains).
For example, suppose a feature library for phonological feature specificationsis set up asfollows.
<fLi b type="phonol ogi cal features">
<f id="CNS1" name="consonantal "> <plus/> </f>
<f id="CNS0" nanme="consonantal "> <m nus/> </f>

<f id="VOCl" nanme="vocalic"> <plus/> </f>
<f id="VOC0" nane="vocalic"> <m nus/> </f>
<f id="Vvd 1" nanme="voiced"> <plus/> </f>
<f 1d="VvVA 0" nane="voiced"> <m nus/> </f>
<f 1d="ANT1" nane="anterior"> <plus/> </f>
<f 1d="ANTO" nane="anterior"> <m nus/> </f>
<f 1d="COR1" nane="coronal "> <plus/> </f>
<f id="COR0" nane="coronal "> <m nus/> </f>

<f 1d="CNT1" nane="continuant"> <plus/> </f>
<f 1 d="CNTO0" nanme="continuant"> <m nus/> </f>

<f 1d="STR1" nane="strident"> <plus/> </f>
<f id="STRO" name="strident"> <m nus/> </f>
<l-- ... -->

</ fLib>

Then the feature structures that represent the analysis of the phonological segments (phonemes)/ t/,
/dl,/sl,and/z/ can be defined asfollows.

<fs feats="CNS1 VOCO VO O ANT1 COR1 CNTO STRO"/>

<fs feats="CNS1 VOCO VO 1 ANT1 CORLl CNTO STRO"/>

<fs feats="CNS1 VOCO VO O ANT1 COR1 CNT1 STR1"/>

<fs feats="CNS1 VOCO VO 1 ANT1 CORLl CNT1l STR1"/>

The preceding are but four of the 128 logically possible fully specified phonological segments using
the seven hinary features listed in the feature library. Presumably not all combinations of features
correspond to phonological segments (there are no strident vowels, for example). The legal
combinations, however, can be collected together in afeature-structure library, with each element
being given auniquei d attribute, asin the following example.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 24/61 - 11/11/03

<fsLib id="fsl 1" type="phonol ogi cal segnent definitions">

Simons: | see by this example that type on <fsLib> means something different from type on
<fs>. Therefore, do NOT use the same term and attribute. What is meant hereis an adhoc
grouping, not aformally defined type.

Possible aternatives. kind=, group=, set=,

<l-- -->
<fs id="T.DF" feats="CNS1 VOO0 VO 0 ANT1 COR1 CNTO STRO"/>
<fs id="D.DF" feats="CNS1 VOCO VO 1 ANT1 COR1 CNTO STRO"/>
<fs id="S.DF" feats="CNS1 VOO0 VO 0 ANT1 COR1 CNT1 STR1"/>
<fs id="Z.DF" feats="CNS1 VOO0 VO 1 ANT1 COR1 CNT1 STR1"/>
<l-- -->

</ fsLib>

Text elements can be linked to these feature structures in any of the ways described in section15.2
Global Attributes for Simple Analysesof the TEI guidelines. In the following example, a<l i nkG p>
element is used to link selected characters in the text ‘ Caesar seized control' to their phonological

representations.
<text id='TXT1' >

<l-- ... -->
<body>
<l-- ... -->
<ab id='S1'>

<w i d=' SIW' ><c id=' SIWMCl' >C</ c>ae<c id=' SIWLC2' >s</ c>ar </ w>
<w id=' S1IW' ><c i d=" SIVRC1' >s</ c>ei <c i d=' SIWC2' >z</ c>e<c
i d=' SIW2C3' >d</ c></ w>
<w i d=" SIWB' >con<c id=" SIMBC1' >t </ c>r ol </ w>.

</ ab>
<l-- ... -->

</ body>

<fsLib id="FSL1 type='phonol ogical segnment definitions' >
<l-- as in previous example -->

</ fsLi b>

<linkG p type='phonol ogi cal identification of characters’
domai ns='" FSL1 TXT1'
t ar gFunc=' phonol ogi cal . segnent character' >
<l-- ... -->

<link id='LT" targets='T.DF SIWBCl'/>

<link id="LD' targets='D.DF S1W2C3'/> Simons: Shouldn't these be T.DF and D.DF?
<link id='LS targets='S.DF S1WCl'/>

<link id='LZ targets='Z DF SIW2C2'/>

<l-- ... -->

</1inkG p></text>
Because of the simplicity of the binary feature values, there is no particular gain in pointing at those
values rather than specifying them directly. However, the mechanism of using thef Val attribute on
<f > elements is useful for representing more complex feature values, and can be illustrated using
binary values. Suppose the <pl us> and <mi nus> elements are collected together in a<f vLi b>, as
follows.

Simons: If one did use fVal to refer to a complex value, then it would be out of an fsLib, not
an fvLib!

| personally don't see the justification for the fvLib. When two <f>s have different ids, they

are different feature specifications. When two atomic values have different ids, they are not
different values!!!! <plusid="mine"> means exactly the same thing as <plus id="yours">.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 25/61 - 11/11/03

However, <f id="mine" ...> and <f id="yours" ...> can mean something different. Thus, it is
legitimate to point to <fs> and <f> instances, but not to primitives.

This example with fVal="B1" doesn't save any space over simply embedding <plus>, nor
doesit add any functionality, but it does add to the complexity of what anybody implementing
software needs to implement to support the standard.

Even with something like <str> values which might be long, so that one might argue that
pointing to valuesin a fvLib would bejustified, it is still dubious because thereis essentially
aone-to-one mapping from feature specification to value. That is, just wrap the valuesin the
FVLib with the <f> they go with, and you now havethefLib. Asfar as| cantell, thefvLib
just adds cost to implementers without a comensurate amount of benefit.

<fvLi b type="bi nary val ues">
<plus id="Bl1"/>
<m nus id="B0"/>
</ fvLi b>
Then the feature library presented at the beginning of this section can be represented as follows.
<fLi b type="phonol ogi cal features">
<f id="CNS1" name="consonantal " fVal ="B1"/>
<f id="CNSO0" name="consonantal " fVal ="B0"/>
<f id="VOC1" nane="vocalic" fVal ="B1"/>
="B0"/ >

I
<f id="VOC0" nane="vocalic" fVal
<f id="Vvd 1" nane="voi ced" fVal ="B1"/>
<f id="VvVO 0" nane="voiced" fVal="B0"/>
<f id="ANT1" nane="anterior" fVal="B1"/>

<f id="ANTO" nane="anterior" fVal="B0"/>
<f id="COR1" nane="coronal" fVal="B1"/>

<f 1d="COR0" nanme="coronal" fVal ="B0"/>

<f id="CNT1" nane="continuant" fVal ="B1"/>
<f i d="CNTO0" nanme="continuant" fVal ="B0"/>
<f id="STR1" nane="strident" fVal="B1"/>
<f id="STRO" nane="strident" fVal="B0"/>
<l-- .. -->

</ fLib>
Although <f s> elements are legitimate feature values (see section 5.4 [16.5] Structured Values), they
are not allowed within <f vLi b> elements. They should be placed in<f sLi b> elements.

5.3 Symbolic, Numeric, M easurement, Rate and String Values[16.4]

Erjavec : "This library would have atotal of 1620 (39 35 2 2) entries."
missing × !

End: as Lou notes, not only <rate> but <str> has been dropped aswell - 1'd suggest putting both in
again.

In section 5.1 [16.2] Elementary Feature Structures: Features with Binary Values, we defined the two
empty elements <pl us> and <mi nus> which are used to represent binary values. In this section, we

Collated comments for_SC4 NO33 rev.1 FS.doc - 26/61 - 11/11/03

define five more feature-value el ements: the empty elements <synme for expressing symbolic values,
<nbr > for expressing numeric values, <nsr > for expressing measurement values, and <r at e> for
expressing rate values, and the element <st r > for expressing string values. These elements, along
with their descriptions and attributes, are the following.

« <sym> provides symbolic values for features.

value provides a symbolic value for a feature, one of afinite list that may be specified in a

feature declaration.
Rel indicatestherelation of the given value to the actual value.
» <nbr> provides a numeric value or range of values for afeature.

value provides a numeric value.
valueTo together with val ue attribute, provides arange of numeric values.

type indicates whether value or range is to be understood as real or integer.
Simons: insert “ valueTo” instead of “range”
Rel indicates the relation of the given value or range to the actual value or range.

e <msr> provides a measure value or range of values for a feature.

unit provides a unit for a measure feature, one of afinite list that may be specified in a

feature declaration.
value provides a numeric value.
valueTo together with val ue attribute, provides arange of numeric values.

type indicates whether value or range is to be understood as real or integer.
Simons: insert “valueTo” instead of “range”
Rel indicates the relation of the given value or range to the actual value or range.

« <rate> provides arate value or range of values for afeature.

Burnard : A large section explaining not only <rate> but also <str> has been excised from section 5.3.
| understand why <rate> might not seem immediately relevant to linguistic applications (tho surely
there might be some applications in phonology?) but | think it should be kept in the standard, and that
means it needs to be explained as clearly as the other primitives.

Erjavec :"rel" attribute is everywhere mistyped as "Rel"

This section is missing a big chunk on <valRange>:

The <sym> element is to be used for the value of a feature when that feature can have any of asmall,
finite set of possible values, representable as character strings. </gap>

unit provides a unit for a rate feature, one of a finite list that may be specified in a

feature declaration.

per provides an interval for a rate feature, one of afinite list that may be specified in a

feature declaration.
value provides a numeric value.
valueTo together with val ue attribute, provides a numeric range of values.

type indicates whether value is to be understood as real or integer.
Simons: insert “or valueTo” dter “ value”’
Rel indicates the relation of the given value or range to the actual value or range.

e <str> provides astring value for afeature.

Rel indicates the relation of the given value to the actua value. The <syn» element is
to be used for the value of a feature when that feature can have any of a small, finite set of possible
values, representable as character strings.

[Titre 3]Example

Features with <syn®, <pl us>, and <mi nus> values may be used to encode highly structured
information such as may be obtained from precoded survey instruments. We illustrate by means of a
coding scheme based on the one that is used for classifying potential printed entries in the British

Collated comments for_SC4 N0O33 rev.1 FS.doc - 27/61 - 11/11/03

National Corpus. The scheme uses the following features and associated values.
medium
books and magazines; miscellaneous; written to be spoken
domain
imaginative; applied science; arts; belief and thought; commerce and finance; leisure; natural
and pure science; social science; world affairs
level
high; medium; low
sampling range
beginning; middle; end; whole; whole less ten percent
date of origination
1960-1975; 1975-1993
published (miscellaneous items only)
yes; no
selection method (books and periodicals only)
chosen on grounds of circulation or influence; chosen at random
A comprehensive feature library for this scheme is the following; thei d specifications are those used
by the British National Corpus (BNC) project:
<fLib type="BNC classification features">
<f id="ca002" nane="medi um' ><sym val ue="book. or. peri odi cal "/ ></f>
<f id="ca003" nane="nmedi um' ><sym val ue="m scel | aneous"/ ></f >
<f id="ca004" name="nedi un ><sym val ue="witten.to.be.spoken"/></f>
<f id="ca005" nane="donmi n"><sym val ue="i magi native"/></f>
<f id="ca006" nane="donai n"><sym val ue="appli ed. sci ence"/></f>
<f 1d="ca007" nane="donmi n"><sym val ue="arts"/></f>
<f id="ca008" nane="domai n"><sym val ue="bel i ef. and.thought"/></f>
<f 1d="ca009" nane="donmi n"><sym val ue="comer ce. and. fi nance"/></f>
<f id="ca00a" nane="donmi n"><sym val ue="1ei sure"/></f>
<f 1d="ca00b" nanme="donmi n"><sym val ue="natural . and. pure. sci ence"/></f>
<f id="ca00c" nane="donmi n"><sym val ue="soci al . sci ence"/></f>
<f 1d="ca00d" nanme="donmi n"><sym val ue="worl d. affairs"/></f>
<f id="ca00e" nane="I|evel "><sym val ue="hi gh"/></f>
<f id="ca00f" nanme="| evel "><sym val ue="nedi un'/></f >
<f 1d="ca00g" nane="|evel "><sym val ue="1 ow'/ ></f >
<f id="ca00h" nane="sanpl e.type"><sym val ue="begi nni ng"/></f>
<f 1d="ca00j" nane="sanpl e.type"><sym val ue="m ddl e"/></f>
<f id="ca00k" nane="sanpl e.type"><sym val ue="end"/></f>
<f 1d="ca00l" nanme="sanpl e.type"><sym val ue="whol e"/ ></f>
<f id="ca00ni nane="sanpl e.type"><sym val ue="whol e. | ess.ten. percent"/></f>
<f i1d="ca00n" nane="publi shed. bet ween"><sym val ue="1960. 1975"/ ></f >
<f id="ca00p" nane="publi shed. bet ween"><sym val ue="1975.1993"/></f >
<f id="cal00r" nane="published"><pl us/></f>
<f id="ca00s" nane="published"><m nus/></f>
<f id="ca00t" nane="sel ection. net hod"><sym val ue="pri nci pl ed"/></f>
<f id="calO0Ou" nane="sel ection. net hod"><sym val ue="randoni'/ ></f >
</fLib>
An entry which is a book or periodical on world affairs, medium level, sampled from the middle,
published between 1975 and 1993, and selected on a principled basis could then be assigned the
following feature-structure code; this code could also be placed in a feature-structure library that
contains all the possible fully-specified BNC entry classifications. This library would have a total of
1620 (39352 2) entries.

5 3 33353 35

<fs i d="ca2dfjpt"
type="BNC cl assification for witten docunents"
f eat s="ca002 ca00d ca00f ca00j caOOp caOOt"/>
[Note: an example for <alt> should be provided here]
[Note: the following examples should be more closely related to language resource

Collated comments for_SC4 N033 rev.1 FS.doc - 28/61 - 11/11/03

management]

The <nbr > element is to be used when the value of a feature is a number or a range of numbers. For
example, suppose one wishes to encode information contained in classified advertisements for the
sale or rental of real estate, such as the number of bedrooms and bathrooms in a listed property, and
its advertised selling or rental price. One way of representing such information is as follows.
<fs type="real estate listing">

<f nanme="nunber. of . bat hr oons" ><nbr val ue="2"/></f>

<f name="nunber. of . bedr oons" ><nbr val ue="3"/></f>

<f name="nont hly.rent"><nbr val ue="625.00"/></f>
</fs>
The information that the number of bedrooms isin the range from 3 to 5 and the monthly rent isin the
range from 625.00 to 950.00 may be represented as follows, using the optional val ueTo attribute.
<fs type="real estate listing">

<f nanme="nunber. of . bedr oons" ><nbr val ue="3" val ueTo="5"/></f>

<f name="nont hly. rent"><nbr val ue="625. 00" val ueTo="950.00"/></f>
</fs>
The <nbr > (and also the <nsr > and <r at e> elements defined below) element a'so may have at ype
attribute to specify whether the values of theval ue and val ueTo attributes are to be construed as
integer or real numbers.
The <msr > element to be used when the value of a feature is a scalar quantity, essentialy a
combination of a numeric value and a symbolic value for identifying the scale on which the numeric
value occurs. For example, real estate listings often provide the area (in square feet or meters) of a
house or apartment and the area (in acres or hectares) of land being sold or rented. One way of
representing information about such areasis as follows.
<fs type="real estate listing">

<f name="interior.area"><nmsr val ue="2000" unit="sq.ft"/></f>

<f nanme="property.area"><nsr value="0.5" unit="acre"/></f>
</fs>
The value of the monthly.rent' feature in the two examples above might be more accurately analysed
as a measurement rather than as a numeric value, since the amount of the rent in question is to be
understood as payable in a specific currency (US or Canadian dollars, pounds sterling, euro, yen...)

To make the currency scale explicit, the first example of this feature might be re-encoded as follows.
<f name="nonthly.rent"><nsr val ue="625.00" unit="USD"/></f>

Theuni t and val ue attributes of the <nsr > element are both required. If theuni t attribute is not
needed (for example, if no confusion would result if theuni t attribute is not specified), then the
<nbr > element may be used to express the feature value.

[Note: the original description of <rate> has been dropped]
Simons: Does that mean <rate> is being dropped from the proposed standard? That wouldn't
bother me, but if so, it should be dropped from the opening paragraph of this section and the
list of elements and attributes.

5.4 Structured Values[16.5]

Features may have structured values as well; these values are represented by either the<f s> element,
or the f Val attribute on the <f > element, which can point to an <f s> element. Since an <f s> or a
pointer to an <f s> is permitted to occur as a value of an <f >, recursion is possible. For example, an
<f s> element may contain or point to an <f > element, which may contain or point to an <f s>
element, which may contain or point to an <f > element, and so on. To illustrate the use of structured
values, consider the following simple model of a personal record, consisting of a person's name, date
of birth, place of birth, and sex. Each personal record is a<fs type='personal record' > tag,
consisting of the corresponding four features, three of which take structured values, as in the
following example.

[LR -> KL: an example more closely related to language resources should be provided

here]
<fs type="personal record">

Collated comments for_SC4 N0O33 rev.1 FS.doc - 29/61 - 11/11/03

<f name="full.nane">
<fs type="nane record">
<f name="first.nanme"> <str>Kathleen</str> </f>
<f name="m ddl e. nane" > <str>Anne</str> </f>
<f name="surname"> <str>Barnett</str> </f>
</fs>
</[f>
<f nanme="date.of.birth">
<fs type="date record">
<f name="year"> <nbr val ue="1968"/> </f>
<f name="nont h"> <nbr value="4"/> </f>
<f name="day"> <nbr val ue="17"/> </f>
</fs>
</[f>
<f nanme="place.of .birth">
<fs type="pl ace record">
<f name="city"> <str>Austin</str> </f>
<f nanme="state"> <symval ue="TX"/> </f>
</fs>
</[f>
<f nanme="sex"> <sym val ue="femal e"/> </f>
</fs>

Now suppose that feature-structure libraries are maintained for name records and place records.
Further suppose that the feature structure representing the name record in the previous example has an
i d attribute with the value nkab027, while the feature structure representing the place record has an
i d attribute whose value is t xausti n.s Then the preceding example could also be encoded as
follows. (Anidentifier is aso provided for the personal record.)

<fs id="pkab027" type="personal record">
<f name="full.nanme" fVal ="nkab027"/>
<f nane="date.of.birth">
<fs type="date record">
<f nanme="year"> <nbr val ue="1968"/> </f>
<f name="nont h"> <nbr value="4"/> </f>
<f name="day"> <nbr value="17"/> </f>
</fs>
</[f>
<f name="place.of.birth" fVal ="txaustin"/>
<f name="sex"> <symvalue="female"/> </f>
</fs>
This representation could be simplified further if a feature library is maintained for the year, month,
day and sex features, so that thef eat s attribute may be used as follows.
<fs id="pkab027" type="personal record" feats="sxf">
<f name="full.nanme" fVal ="nkab027"/>

<f name="date.of.birth"><fs type="date record" feats="y1968 n0D4
di17"/></f>

<f name="place.of.birth" fVal ="txaustin"/>
</fs>
Next, suppose that a feature-structure library is also maintained for personal records, and that the
library also contains records for the parents of the individual identified in the previous example.
Suppose that the father is identified as pnf bO09 and the mother as par n002. Then the personal-
record feature structure could be easily augmented to include pointers to the parents, as follows.
<fs id="pkab027" type="personal record" feats="sxf">

<f name="full.name" fVal ="nkab027"/>

<f name="date.of.birth"><fs type="date record" feats="y1968 nD4
di7"/></f>

5 [Rem.: should not this be placed in-line somewhere in the standard]: Feature-structure, rather than feature-
value, libraries should be used for housing collections of feature structures.

Collated comments for_SC4 N033 rev.1 FS.doc - 30/61 - 11/11/03

<f name="place.of.birth" fVal ="austintx"/>
<f nanme="not her" fVal ="parn002"/>
<f nanme="father" fVal="pnfb009"/>
</fs>
If the personal records identified as parn002 and pnf b009 aso contain information about the
parents of those individuals, then from the present record, one would have access to that individual's
grandparents as well.
Assuming that personal records of the sort described in this section are being maintained in
association with text files, the records can be linked to those texts in any of the ways described in
chapter 14 Linking, Segmentation, and Alignment of the TEI guidelines, provided that identifiers are
added for appropriate features, as in the following illustration.
<text id="bfile"><body>
<div id="tkab027" type="birth certificate">
<p><nane id="t1lkab027" type="person">Kathl een Anne Bar nett </ name>
was born at <tine id="t1t0659">6:59 a.m</tinme> on
<date id="t1d680417">April 17, 1968</date> in
<name id="t1lsetonhsp” type="org">Seton Hospital </name> in
<name id="t 1t xaustin" type="pl ace">Austi n</nane> to
<seg id="sl1l">M.</seg> and <seg id="s2">Ms. </ seg>
<nare id="t 1nfb009" type="person">M chael F. Barnett</nane>
of <nane id="t lsansabat x" type="pl ace">San Saba</ name>.
</ p>
<l-- ... -->
<join id="tlarn002" targets="s2 t1nfb009"/>
<join id="t2nfb009" targets="sl1 t1infb009"/>
<l-- ... -->
</ di v></ body>
<fsLib id="prec" type="personal records">
<fs id="pkab027" type="personal record" feats="sxf">
<f name="full.name" fVal ="nkab027"/>
<f id="dkab027" name="date.of.birth">
<fs type="date record" feats="y1968 nD4 d17"/>
</[f>
<f id="bkab027" name="pl ace.of.birth" fVal ="txaustin"/>
<f i1d="nkab027" nanme="not her" fVal ="parn002"/>
<f id="fkab027" name="father" fVal ="pnfb009"/>
</ fs></fsLib>
<linkGp type="record verification" domains="bfile prec" targFunc="source
goal ">
<link targets="t1kab027 nkab027"/>
<link targets="t1d680417 dkab027"/>
<link targets="t 1t xaustin bkab027"/>
<link targets="tlarn002 nmkab027"/>
<link targets="t2nfb009 fkab027"/>
</1inkG p>
</text>

5.5 Singleton, Set, Bag and List Collections of Values [16.6]

Simons:. Thereis adlight incongruity here in that the introduction to feature structuresin
section 4 only talks about lists. And in the literature on feature structures in computational
lingusitics, that is about all you runinto. It is probably worth considering simplifying the new
standard to support just list, and even to do it by a<list> element contained within an <f>,
rather than by an "org" attribute.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 31/61 - 11/11/03

Erjavec:

Mistakes in P4?

"In aset, items are ordered, and may not be repeated.”

surely "not ordered"!?

"The <null> element when used with afeature organised as a singleton is a semantic error; however,
its appearance as avalue for such afeature cannot be flagged by SGML or XML parsers.”

I'd imagine it is simple to find such cases using a schema language?

In the discussion to this point, we have assumed that features have exactly one simple value.
However, for many purposes, it is useful to be able to consider the values of certain features to be
organized in more complex ways, for example as sets, bags (or multisets), or lists. Accordingly, we
provide for four different ways in which feature values may be organized, namely assingletons, sets,
bags and lists. We do so by means of an or g attribute on the <f > element, which takes on one of the
designated valuessi ngl e, set , bag, and | i st. A feature whose value is organized as a singleton is
understood as having exactly one simple value. If more than one value is specified for it, we assume
that only the first one is considered to be its true value. A feature whose value is organized as a Set,
bag or list may have any positive number of values as its content. In a set, items are ordered, and may
not be repeated. In a bag, items are not ordered, and may repeat. In alist, items are ordered and may
repeat. Sets and bags are thus distinguished from lists in that the order in which the values are
specified does not matter for the former, but does matter for the latter, while sets are distinguished
from bags and lists in that repetitions of values do not count for the former but do count for the latter:
No default value for the or g attribute is declared in the DTD; however, a default value for that
attribute can be declared for particular features in the feature-system declaration; see section 6 [26]
Feature System Declaration. Note that if only one value is specified for a given<f > element, the set,
bag and list values of the or g are all essentially equivalent to the singleton value, so the omission of
the or g attribute for such afeature is not problematic:
To illustrate the use of the or g attribute, suppose that the illustration of personal records from the
previous section is extended to include pointers to an individual's siblings. Suppose aso that the
individual identified as<f s i d="pkab027" > has siblings identified as<fs i d="panb005" >, <f s
i d="pnfb010">and<fs id="pzrb001"> inthe personal records library. Then we may extend the
personal record for <f s i d="pkab027" > asfollows.
<fs id="pkab027" type="personal record" feats="sxf">

<f name="full.name" fVal ="nkab027"/>

<f name="date.of.birth">

<fs type="date record" feats="y1988 n0D4 d17"/>

6 An XML DTD cannot however straightforwardly validate that val ues for features organized as sets
are not repeated;

Simons: It is possible in an XML Schema with a unique constraint. Would there also be a
Schema for the standard?

such validation would have to be carried out by an application program. Our method of representing set, bag and
list values also does not permit such values to be directly embedded within one another. In order to embed a set
within a set, for example, one must specify the embedded set as the value of afeature of afeature-structure value
of the including set. Fortunately, thisis not as hard as it sounds: the embedding of alist within alist isillustrated
in the second example below.

7 Unless the value is the <null> element; see below.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 32/61 - 11/11/03

</[f>
<f nanme="place.of .birth" fVal ="austintx"/>
<f name="not her" fVal ="parn002"/>
<f name="father" fVal ="pnfb009"/>
<f nanme="si blings" org="set" fVal ="panb005 pnfb010 pzrb001"/>
</fs>
A more elaborate illustration of the use of the or g attribute is the following <f name="career"
org="1ist"> element which may be added to the personal records of an individual to record the job
career of that individual. The feature structures that constitute the value of this feature document the
jobs which the individual has held in the order in which they were held. Note that a list has been
embedded within a list by means of intervening <fs type="enpl oynment record"> and <f
name="pronoti on. hi st ory" > elements.
<f name="career" org="list">
<fs type="enpl oynent record">
<f nanme="enpl oyer " ><str>Saf eway Stores</str></f>
<f name="hiring.information">
<fs type="hire structure">
<f name="hire.date"><fs type="date structure" feats="y1988
nD6"/ ></ f >
<f name="job.title"><sym val ue="stocker"/></f>
<f name="wage"><rate val ue="6. 00" per="hour"/></f>
<f nanme="hours. worked"><rate val ue="40" per="week"/></f>
<f nane="status.code" fVal ="sc4a"/>
</fs>
</[f>
<f nanme="pronotion. history" org="list">
<fs type="pronotion record">
<f nanme="date"><fs type="date structure" feats="y1988 nil2"/></f>
<f nanme="job.title"><sym val ue="cashier"/></f>
<f name="wage"><rate val ue="7.00" per="hour"/></f>
<f nanme="hours. worked"><rate val ue="40" per="week"/></f>
<f nane="status. code" fVal ="sc4a"/>
</fs>
<fs type="pronotion record">
<f nanme="date"><fs type="date structure" feats="y1990 nD2"/></f>
<f name="job.title"><sym val ue="supervi sor"/></f>
<f nanme="sal ary"><rate val ue="18000" per="year"/></f>
<f name="status.code" fVal="sc3c"/>
</fs>
</[f>
<f nanme="term nation.information">
<fs type="termnation structure">
<f nane="term nation.date"><fs type="date structure" feats="y1991
nD4"/ ></ f >
<f name="status.code" fVal="sc3c"/>
<f name="reason.for.term nation"><sym val ue="laid.of f"/></f>

</fs>
</[f>
</fs>
<fs type="enpl oynent record">
<l-- ... -->
</fs>
<l-- ... -->

</f>

The information contained in such features may be linked to textual references in the usual way. The
<f name="st at us. code" > feature has been included to show how evaluative or interpretive
information can be included along with information gleaned from textual records. The example
presumes that the status code values are maintained in a designated<f vLi b>.

Collated comments for_SC4 N033 rev.1 FS.doc - 33/61 - 11/11/03

Features with values organized as sets, bags or lists can sometimes be used instead of features
organized as singletons, whose values are individual feature structures. For example, consider the
following encoding of the English verb form ‘sinks', which contains an ‘ agreement' feature whose
value is afeature structure which contains * person’ and * number' features with symbolic values.
<fs type="word structure">
N
<f nanme="word. cl ass"> <sym val ue="verb"/> </f>
<f nanme="tense"> <sym val ue="present"/> </f>
<f nanme="agreenent">
<fs type="agreenent structure">
<f nanme="person"> <symvalue="third"/> </f>
<f nanme="nunber"> <sym val ue="singular"/> </f>
</fs>
</[f>
S
</fs>
If one does not care about the names of the features contained within the ‘agreement' feature
structure, the containing <f nanme="agr eement "> element can be given an or g attribute with the
value set , and the contained <f s> element, together with the person and number feature elements it

contained, can be eliminated, as follows.

<fs type="word structure">
<l-- ... -->
<f name="word. cl ass"> <sym val ue="verb"/> </f>
<f name="tense"> <sym val ue="present"/> </f>
<f name="agreenent" org="set"><sym val ue="t hird"/><sym
val ue="si ngul ar"/></f >
<l-- ... -->
</fs>
The encoding in the preceding example presumes that the <f Decl > element for the *agreement'
feature would look something like the following; for further details, see section 6 [26] Feature System
Declaration.
<f Decl nanme="agreenent" org='set'>
<l-- L. -->
<vRange>
<vAl t >
<symval ue='first'/>
<sym val ue=' second' / >
<symvalue="third' />
</VvA t>
<vAl t>
<sym val ue='singul ar'/>
<sym val ue='plural'/>
</VvA t>
</ vRange>
<l-- ... -->
</ f Decl >
The set, bag or list which has no members is known as the null (or empty) set, bag or list. To refer to
it, the <nul | > element is provided,; its description and attributes are as follows.

« <null> represents the null set, bag, or list, depending on whether the org attribute of its parent
f has the value set, bag, or list; has no interpretation if the org attribute of its parent f element
has the value single.

No attributes other than those globally available (see definition for a.global)

Simons: Note that if lists were done with a<list> element, then <null> would not be needed.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 34/61 - 11/11/03

It would be represented by <list/>. Thus we could simplify (and bring things more into line
with standard practice as described in section 4) by removing the org attribute and <null>, and
introducing <list> in their place.

So, for example, to indicate that the individual identified above by the<f s i d=" pkab027" > element

has no siblings, we may specify the ‘ siblings' feature as follows.
<f nanme="siblings" org="set"> <null/> </f>

The <nul | > element when used with a feature organized as a singleton is a semantic error; however,
its appearance as a value for such afeature cannot be flagged by XML parsers. The<nul | > element,
when it appears as afeature value, must be the only value.

Simons: Like plus and minus, <null> shouldn't be alowed to have any attributes

5.6 Alternative Features and Feature Values[16.7]

Note: It was intended that the representation based on the generic <at> mechanism be dropped.
However, considering that we will need such a generic mechanism for TC37 as a whole, some more
in depth thought should be had before just getting rid of thisin this section. Someone should make a
synthesis on alternation and go through section 14.8 of the guidelines...

In this section, two methods of representing the alternation (ambiguity or uncertainty) of features and
feature values are presented. The first of these methods is to be used for nonsystematic or sporadic
markup of alternation of individual features or values; it makes use of the special-purpose<f Al t >
and <vAl t > elements. The other is to be used for systematic markup of alternation and for the
aternation of groups of features or values; it makes use of the general-purpose <al t > element
introduced in section 14.8 Alternation of the TEI guidelines (see www.tei-c.org). The <f Al t > and
<vAl t > elements have the following description and attributes.

« <fAlt> provides aternative features for afeature structure or other feature alternation.

mutExcl indicates whether values are mutually exclusive. « <VAIt>
provides alternative (disjunctive) values for afeature.

mutExcl indicates whether values are mutually exclusive.

Burnard: | don't quite understand what is meant by the reference to <alt>. It isageneric mechanismin
P4, which could be documented in the ISO standard with reference to aternation in general, as a
generalisation of the specific <vAlt> <fAlt> etc. elements. The reason for having these more specific
tags, by the way, is that they permit more constrained content models.

Simons: | think this is another place to simplify for the sake of producing an implementable
standard. Though we all understand the distinction from formal logic, | don't think the
distinction is made in the practice of using feature structures. | don't think I've ever seen
feature structures in a linguistics publication that had two different notations for mutually
exclusive alternation versus non mutually exclusive; one only every sees a single notation for
aternation, thus | think we should only define "adternation” asis the convention in practice.
To illustrate the use of the <f Al t > element to represent the alternation of features, suppose one is
uncertain whether a particular real estate advertisement describes a house with two bedrooms or with
two bathrooms. This uncertainty can be represented as follows

Collated comments for_SC4 N0O33 rev.1 FS.doc - 35/61 - 11/11/03

<fs type="real estate listing">
<fAt>
<f name="nunber. of. bat hroons" > <nbr value="2"/> </f>
<f name="nunber. of. bedroons"> <nbr val ue="2"/> </f>
</[fA t>
</fs>
This representation leaves unspecified whether or not the aternation is mutually exclusive (i.e.
whether having two bathrooms excludes the possibility of having two bedrooms and vice versa). To
make this aspect of the alternation explicit, one can specify a vaue for thermut Excl attribute, as
follows.
<fs type="real estate listing">
<fAI't nut Excl ="N'>
<f name="nunber. of . bat hroons” > <nbr value="2" /> </f>
<f nanme="nunber. of . bedroonms" > <nbr value="2" /> </f>
</[fA t>
</fs>
The <f Al t> element can also be used to represent uncertainty about whether the number of
bathrooms is two or three, as follows; note that the attribute valuenut Excl =" Y" can be inferred for
the <f Al t > element in this example.
<fs type="real estate listing">
<fAt>
<f nanme="nunber. of. bat hroons" > <nbr value="2" /> </f>
<f name="nunber. of. bat hroons" > <nbr value="3" /> </f>
</[fAt>
</fs>
Since the ‘ number.of.bathrooms' feature in this example can be factored out of the alternation, a
<vAl t > element could be used in place of it to represent the alternation of the feature values more
simply, asfollows:
<fs type="real estate listing">
<f name="nunber. of . bat hroons” >
<vAl t >
<nbr val ue="2" />
<nbr val ue="3" />
</VvAt>
</[f>
</fs>
The <f Al t > and <vAl t > elements can also be used to indicate certain alternations among values of
features organized as sets, bags or lists. For example, suppose one uses a<f name="extras"
org="set"> element in feature structures for rea estate listings to represent items that are
mentioned to enhance a property's sales value, such as whether it has a pool or a good view. Now
suppose for a particular listing, the extras include an alarm system and a fenced-in yard, and either a
pool or ajacuzzi (but not both). This situation could be represented, using the <vAl t > element, as
follows.

Simons: I'm not really keen on this. Another example was given above in the example that
showed how you could model agreement as a set feature as opposed to afeature structure. It
IS true that the power of the TEI FSD makes it possible to do this, but do any publications
about language description actually do it? What is happening is that we are using the facilities
in the TEI FSD to define aregular expression language for defining validity over lists of
values. But | think that is a place where feature creep got the better of us--that is not a
standard approach to feature sructures, so why define and implement it?

In the agreement case above, | don't think we would want to encourage anybody to do it that

way. Straight feature structures without aregular expression mechanism has all the power
that is needed to describe agreement. So the regular expression thing does not add descriptive

Collated comments for_SC4 N0O33 rev.1 FS.doc - 36/61 - 11/11/03

power; it just adds alternative ways of doing the same thing that adds to the cost of
implementation and the non-interoperability of conceptually equivalent data sets.

In this pool versus jacuzzi example, another way to handle it would be in the constraints part
of the FSD. that is, to say that if <f name+"extras'> contains pool, it may not also contain
jacuzzi. Thus again, removing the regular expression power here does not deprive us of the
power to express the correct linguistic facts.

<fs type="real estate listing">
<l-- ... -->
<f name="extras" org="set" >
<str>al arm systenx/str>
<str>fenced-in yard</str>
<vAl't nut Excl ="Y">
<str>pool </str>
<str>jacuzzi</str>
</ VvAl t>
</[f>
<l-- ... -->
</fs>

Simons: | may have misunderstood this example in the comment to the right. | was assuming
this was defining a class of listings, as opposed to a specific listing. This was because of the
wording "but not both". Does this actually mean, the specific house we are describing has
either apool or ajacuzzi, but we aren't surewhich it is, but we are sure that it is not both? If
that isit, then my comment to the right is somewhat off base since | was commenting from
the point of view of an FSD, but the comment is still worth passing on asiit relatesto using
this sort of thing in an FSD.

Now suppose the situation is like the preceding except that one is also uncertain whether the property
has an alarm system or a fenced-in yard, or possibly both. This can be represented as follows.
<fs type="real estate listing">
<l-- L -->
<f name="extras" org="set" >
<vAl't nut Excl ="N'>
<str>al arm systenx/str>
<str>fenced-in yard</str>
</VvA t>
<vAl't nut Excl ="Y">
<str>pool </str>
<str>jacuzzi</str>
</ vAl t>
</[f>
S
</fs>
Finally, suppose that the listing specifies that the property has afinished basement, and that it aso has
either an alarm system and a pool or a fenced-in yard and a jacuzzi. This situation cannot be
represented using the <vAl t > element, because the alternation holds between subsets of two values
each. It can, however, be represented using the <f Al t > element, as follows; note that the <st r >
element with the valuef i ni shed basenent element must be repeated.
<fs type="real estate listing">
<l-- ... -->
<fAl't nut Excl ="Y">
<f name="extras" org="set" >
<str>fini shed basenent</str>

Collated comments for_SC4 N0O33 rev.1 FS.doc - 37/61 - 11/11/03

<str>al arm systenx/str>
<str>pool </ str>
</[f>
<f nane="extras" org="set" >
<str>fini shed basement</str>
<str>fenced-in yard</str>
<str>jacuzzi</str>
</[f>
</[fA t>
<l-- ... -->
</fs>
If alarge number of ambiguities or uncertainties involving a relatively small number of features and
values need to be represented, it is recommended that the general-purpose<al t > element discussed
in section 14.8 Alternation be used, rather than the special-purpose <f Al t > and <vAl t > elements.
The use of the <al t > element avoids the need to explictly represent the alternating elements more
than once.
For example, suppose one has set up a <f sLi b> element containing feature structures representing
the morphological structures of classical Greek inflected words, along with collections of individual
features and feature values, encoded by <f Li b> and <f vLi b> elements as appropriate. The following
example shows how one might then represent the morphological structure of a feminine gender,
accusative case, plural number noun form in classical Greek, such as‘ ????"' goddesses discussed in
section 5.3 [16.4] Symbolic, Numeric, Measurement, Rate and String Values:
<fsLib type="noun structures">

<l-- ... -->

<l-- plural accusative fem nine noun -->

<fs id="wngfkanp" type="noun structure" feats="wn gf ka np"/>
<l-- ... --></fsLib>

<fLi b type="norphol ogi cal features">
<f id="wn" nanme="word.class" fVal="nn"/>

<l-- ... -->

<f id="gf" nane="gender" fVal="fe"/>
<l-- ... -->

<f id="ka" nane="case" fVal="ac"/>
<l-- ... -->

<f id="np" nane="nunber" fVal="pl"/>
<l-- ... --></fLib>

<fvLi b type="norphol ogi cal feature val ues">

<l-- ... -->

<sym i d="nn" val ue="noun" />

<l-- ... -->

<symid="fe" val ue="fem nine" />
<l-- ... -->

<symid="ac" val ue="accusative" />
<l-- ... -->

<symid="pl" value="plural" />
<l-- ... --> </fvLib>

Simons.This is a good example of the basic one-to-one relationship between feature values
and features which | cited above in arguing that fvLib was only adding complexity for
implementation with commensurate added benefit. This example becomes fewer bytes if the
feature values are embedded in the <f>s rather than pointed to, since the feature values are not
getting reused due to the one-to-one from value to feature

Collated comments for_SC4 N0O33 rev.1 FS.doc - 38/61 - 11/11/03

Now consider the noun form * ???7?' goddesses, which is analyzable as a feminine plural noun form
in either the nominative or the vocative case. We may represent this ambiguity by adding the
following entries to the <f sLi b>, <f Li b>, and <f vLi b> elements in the preceding example; assume
that appropriate entries for unambiguous nominative and vocative case forms have aready been
entered.

<l-- Add the following to the feature-structure library -->

<l-- plural nom native-or-vocative femn nine noun -->

<fs id="wngfknvnp" type="noun structure" feats="wn gf knv np"/>
<I-- Add the following to the feature library -->

<I'-- CASE='noninative' or vocative -->

<f id="knv" nane="case" fVal="novo"/>
<l-- Add the following to the feature value library -->

<l-- nomi native or vocative -->

<alt id="novo" targets="no vo"/>
If the <f vLi b> element is not used, and specifications for particular feature values are entered as
content of the <f > elementsin the <f Li b> element, then the ambiguity can be represented as follows.
<fsLib type="noun structures">

<l-- ... -->
<l-- plural nom native-or-vocative fen nine noun -->
<fs id="wngf knvnp" type="noun structure" feats="wn gf knv np"/>
<l-- ... -->
</ fsLi b>
<fLi b type="norphol ogi cal features">
<l-- ... -->

<f i1d="kn" nane="case" >
<sym val ue="noni native" />
<l-- ... -->

</f>

<f id="kv" nane="case" >
<sym val ue="vocative" />

<l-- ... -->
<alt id="knv" targets="kn kv"/>
<l-- ... -->
</f>
</ fLib>

The <al t > element together with the <j oi n> element can, unlike the <f Al t > and <vAl t > elements,
be used to express alternations between sets of features. An example of such an alternation isfound in

analyzed as having either genitive case and singular number features or accusative case and plura
number features, as follows (again, assuming the existence of other elements and identifier attributes
for ssmple features and values).

<l-- Add the following to the feature structure library -->
<l-- fem nine noun, either genitive singular or accusative plural -->
<fs id="wngfkg. nska. np" type="noun structure" feats="wn gf kg.nska.np"/>
<l-- Add the following to the feature library -->
<join id="kg.ns" targets="kg ns"/><!-- genitive singular -->
<join id="ka.np" targets="ka np"/><!-- accusative plural -->
<l-- alternation: gen. sg. or acc. plural -->

<alt id="kg.nska.np" targets="kg.ns ka.np"/>

5.7 Boolean, Default and Uncertain Values[16.8]

Erjavec : "(see definition for a.global)”

thisis not provided in the current version - opens the question how to make hooks into the TEI P4 - as
to a (normative!) reference, or have the standard self-contained (difficult!).

Collated comments for_SC4 N0O33 rev.1 FS.doc - 39/61 - 11/11/03

In this section we define four special empty elements used as feature values: the boolean value
elements <any> and <none>, the <df t > element, and the<uncert ai n> element.

The boolean value elements are used to indicate whether the features they are associated with have
values. The element <any> corresponds to the boolean value true (i.e, that the feature it is
associated with has a value —not the same as the binary value pl us), and the element <none>
corresponds to the boolean valuef al se (i.e., that the feature it is associated with has no value). The
<df t > element is used to indicate that the feature it is associated with has its default value in the
feature structure in which it appears. Finaly, the <uncert ai n> element may be used to indicate
uncertainty about what value, if any, its associated feature has; it is equivalent to the alternation of the
<any> and <none> elements. To indicate uncertainty about which of the possible legal values a
particular feature has, one should use the<any> element.

The descriptions and attributes of these elements are as follows.

» <any> represents boolean true value variable.
No attributes other than those globally available (see definition for a.global)

Simons: Delete “No attributes other than ...” 4 places
<any> <none>

This might be true in some philosophical sense, but it does not seem a useful definition in the
context of feature structures. Rather, it ismorelike:

<any> represents the presence of any possible valid value of the feature

<none> represents the absence of any value for the feature

« <none> represents boolean false value variable.

No attributes other than those globally available (see definition for a.global)
» <dft> provides default value for afeature.

No attributes other than those globally available (see definition for a.global)
e <uncertain> provides uncertainty value for afeature.

No attributes other than those globally available (see definition for a.global)

The values <nul | > and <none> are distinct. The former is to be used with a feature organized as a
set, bag, or list to indicate that its value is the null set, bag, or list in a particular feature structure. The
latter isto be used with such afeature to indicate that it has no value in a particular feature structure.

The boolean values <any> and <none> are also distinct from the binary values <pl us> and
<m nus>. The latter pair are specific possible values for features, whereas the former pair represent
ranges of possible values, not specific possible values, for features. For example, suppose that the
<val Range> element for the ‘auxiliary' feature is declared as follows in the feature structure

declaration, so that either boolean valueis legal.
<vRange><vAl t ><pl us/ ><nmi nus/ ></ vAl t ></ vRange>

Simons: Hmmm. This example shows something that is wrong with the current DTD. A
binary feature should always be plus versus minus, or presence or absence, but it seems a
weakness that the current system allows people to actually use it either way. Perhaps the FSD
should declarea feature as binary, and that automatically means a certain way of using <plus>
and <minus>.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 40/61 - 11/11/03

Given this<vRange>, then the following pair of specificationsis distinct:
<f name="auxiliary"><plus/></f>
<f name="auxiliary"><any/></f>
In this situation, the <any> element is equivalent to the alternation of the <pl us> and <nmi nus>
values.
Given the same <vRange>, then the following pair of specificationsis aso distinct.
<f nanme="auxiliary"><m nus/></f>
<f nanme="auxiliary"><none/ ></f>
The <none> element is equivalent to the negation of the alternation of the<pl us> and <mi nus>
elements.
However, if the auxiliary feature is declared to take only the <pl us> value, then the specifications
below are equivalent:
<f nanme="auxiliary"><plus/></f>
<f nanme="auxiliary"><any/ ></f>
If the auxiliary feature is declared to take only the<pl us> value, then the specifications below are
not equivalent; in fact, the specification isinvalid.
<l-- invalid!l -->
<f nanme="auxiliary"><nm nus/></f>
<f nanme="auxiliary"><none/></f>
It is even possible to declare that a particular feature can never have values, as follows for the
‘impossible feature:
<vRange><nul | / ></ vRange>
In this case, the following specifications are equivalent.
<f nane="inpossi bl e"><any/ ></f >
<f name="i npossi bl e"><none/ ></f >
The elements <any> and <df t > are also designed to be used in conjunction with the <f Decl > and
<val Def aul t > elements in the feature system declaration discussed in section 6 [26] Feature System
Declaration. First, consider the <any> element, and suppose that the <vRange> element in the
<f Decl > element for the ‘ gender' feature is specified as follows.
<vRange>
<vAl t >
<sym val ue='feninine' />
<sym val ue=' mascul i ne' />
<sym val ue=' neuter'/>
</VvA t>
</ vRange>
Then the following two representations are equivalent.
<f nanme="gender"> <any/> </f>
<f name="gender" >
<vAl t >
<sym val ue="f eni ni ne"/ >
<sym val ue="nmascul i ne"/ >
<sym val ue="neuter"/>
</VvAt>
</[f>
Second, consider the <df t > element, and suppose that the default value for the * gender' feature (as
specified by the <val Def aul t > element of its <f Decl > element) isf eni ni ne. Then the following
three representations are equivalent; note that if an<f > element appears without content and without
avalidf val attribute, then it is equivalent to the same element with the<df t > element as its content.
<f name="gender"/ >
<f name="gender"> <dft/> </f>
<f nanme="gender"> <sym val ue="feni nine"/> </f>
Using the <any> and <df t > elements, together with an <f Decl > element for the corresponding
feature in the feature system declaration, provides a method for underspecifying the value of that
feature. The <any> element means that the associated feature has a legal value but what value it has
is not specified. The <dft > element means that the associated feature has the value which the

Collated comments for_SC4 N033 rev.1 FS.doc - 41/61 - 11/11/03

encoder has declared is the normal value of the feature.

The boolean elements <any> and <none> also have specific uses within <f sConst r ai nt s> and
<f Decl > elements in feature system declarations, as described in section 6 [26] Feature System
Declaration.

Simons: Delete “ boolean”

For example, the element <any> can appear as the value of a feature contained within an<f s> of a
particular type which appears in the <cond> element of an <f sConst r ai nt s> element, to indicate
that the feature must appear in feature structures of the designated type (i.e., that it is obligatory) and
that when it does appear, it may appear with any of its legal values. Similarly,<none> can appear in
this way to specify that the feature cannot be present in feature structures of the indicated type (i.e.,
that it is obligatorily absent from such feature structures). All other features that are declared to have
values are understood to be optional in such feature structures.
For example, the following may appear as part of the <f sConstrai nt s> of a feature system
declaration to indicate that an ‘ agreement structure' feature structure must contain a legal ‘ number'
feature, but must not contain a‘ category' feature.
<cond> <fs type='agreement structure' ></fs>
<t hen/ ><f s>
<f name=' nunber' ><any/ ></f>
<f name='cat egory' ><none/ ></f>
</fs>
</ cond>
Further constraints can be imposed on a feature structure of a particular type in the <vRange>
elements of features which take feature structures of that type as values. For example, suppose that
verb and adjective agreement in German are represented by feature structures of the following sorts,
in which verb forms agree in person and number with their subjects and adjective forms agree in
gender, case, and number with their subjects.

<fs type="verb structure">
<l-- ... -->
<f nane="ver bAgreenent ">
<fs type="agreenent structure">
<f name="person"> <symval ue="first"/> </f>
<f name="nunber"> <sym val ue="plural"/> </f>

</fs>
</[f>
<l-- ... -->
</fs>
<fs type="adjective structure">
<l-- ... -->

<f nanme="adj agreenent" >
<fs type="agreenment structure">
<f nanme="gender"> <sym val ue="feninine"/> </f>
<f name="case"> <sym val ue="accusative"/> </f>
<f name="nunber"> <sym val ue="plural"/> </f>
</fs>
</[f>
<l-- ... -->
</fs>
In order to ensure that an ‘agreement structure' feature structure which appears as the value of a
‘verbAgreement' feature may be specified for any person and number feature, but for no gender and
case feature, we may provide a<vRange> element for the ‘ verbAgreement' feature as follows.
<vRange>
<fs type='agreenent structure'>
<f name=' person' ><any/ ></f>
<f nanme=' case' ><none/ ></f >

Collated comments for_SC4 N033 rev.1 FS.doc - 42/61 - 11/11/03

<f nane=' gender' ><none/ ></f>
<f name=' nunber' ><any/ ></f>
</fs>
</ vRange>
Similarly, to ensure that an ‘ agreement structure' feature structure which appears as the value of a
‘adjAgreement’ feature may be specified for any case, gender, and number feature, but for no person
feature, we may provide a<vRange> element for the ‘ adjAgreement’ feature as follows.
<vRange>
<fs type='agreenent structure' >
<f name=' person' ><none/ ></f >
<f name=' case' ><any/ ></f>
<f name=' gender' ><any/ ></f>
<f nanme=' nunber' ><any/></f>
</fs>
</ vRange>
The combination of declarations like these and the principle of subsumption discussed in section 5.8
[16.9] Indirect Specification of Values Using the rel Attribute, allows feature structures to be
underspecified in text markup. For example, to indicate that a given adjective inflection feature
(tagged <f name="adj I nfl ecti on">) is a feature structure (tagged <fs type="inflection
structure">) specifying plura number and any gender and case, we can omit the elements for
gender and case on the<f s> element, as follows.
<f nanme="adji nflection">
<fs type="inflection structure">
<f name="nunber"> <sym val ue="plural "/> </f>
</fs>
</f>
When supplied as the value of a ‘verbinflection' feature, the same feature structure would be
interpreted as an inflection structure specifying plural number and any person.
If an optional feature is not specified in a feature-structure value, then it is assumed to occur with the
<uncert ai n> vaue. For further discussion, see section 5.8 [16.9] Indirect Specification of Vaues
Using therel Attribute.

5.8 Indirect Specification of Values Using therel Attribute [16.9]

Simons: This whole area needs to be carefully re-evaluated. When we were developing the
TEI guidelines, we came up with the rel attribute is away to handle negation (whichis
typicaly found in practice). However, by ending up with arelationship attribute, rather than a
<not> element, we suddenly opened the door to thinking of all kinds of relationships that
could be supported. The result is a system that goes well beyond what any known
implementation of feature system software supports.

For instance, the TEI system allows eq, ne, sb, and nsto be specified on feature structues,
feature specifications, and values. The literature and implemented systems would just have a
negation operator (=ne). | don't thhk examples in the literature would have sb and ns at the
primitive value level. At the feature structure level, the eq versus sb relationship is not
explicitly signaled--subsumption just gets invoked in certain operations over whole feature
structures (but it is not selectively encoded into parts of feature structures).

Note that <f rel="sb"></f> means the same thing as <f><any/></f>. Thus, we don't really
need rel="gsb" since we already have <any/>

And then when we throw in alternations, sets, bags, and lists we have area mess for knowing
how to interpret all the relations. 1'm not sure the full TEI system is well-enough defined
formally to implement, for instance, subsumption of afeature whose value is not equal to an
aternative involving sets or values that don't subsume something else.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 43/61 - 11/11/03

Time to simplify!

Therel attribute is provided for the feature value elements<synw, <nbr >, <nsr >, <r at e>, <str >,
<fs> and <default> (but not <pl us>, <mi nus>, <null> <vAlt> <any>, <none>, and
<uncert ai n>). This attribute may be used for specifying which of various logical relations the given
value has to the actual value of the feature. For all value elements for which ther el attribute is
defined, except for <f s>, the default value for that attribute iseq, which means that the actual value
is equal (or identical) to the given value. Accordingly, the following representations are both
interpreted to mean that the value of the ‘ case' feature isthe<sym val ue="geni ti ve" > element.
<f name="case"> <sym val ue="genitive"/> </f>

<f nanme="case"> <symrel ="eq" val ue="genitive"/> </f>

5.8.1 The Not-Equals Relation [16.9.1]

The rel attribute can aso be specified as having the value ne, which means that the associated
feature has a value which is not equal to the given value. For example, the value<nbr rel ="ne"
val ue="1"> in the following example denotes any numeric value other than 1 for the feature
‘number.of .bathrooms'.
<f name="nunber. of . bat hr oons"> <nbr val ue="1" rel="ne"/> </f>
If an <f Decl > element has been provided which defines the legal values for the associated feature,
then the value ne can be given a positive interpretation. For example, suppose that the<vRange>
element is declared in the<f Decl > element for the * case' feature as follows.
<vRange>
<vAl t >
<sym val ue=' noni native' />
<sym val ue='genitive' />
<sym val ue='dative' />
<sym val ue=' accusative' />
<sym val ue='vocative' />
</VvA t>
</ vRange>
Suppose a'so that the ‘ case' feature is declared as obligatory in a particular feature structure. Then the
following specifications are equivalent in that structure.
<f nanme="case"> <sym val ue="genitive" rel="ne"/> </f>
<f nanme="case">
<VAl t >
<sym val ue="noni native"/>
<sym val ue="dative"/>
<sym val ue="accusative"/>
<sym val ue="vocative"/>
</ vAl t >
</[f>
That is, when ther el attribute occurs with the value ne in the value of an obligatory feature in a
feature structure, the actual value of that feature may be any of its legal valuesother than the
specified value.
On the other hand, if the ‘ case' feature is declared as optional in a particular feature structure, then
the following specifications are equivalent in that structure.
<f name="case"> <sym val ue="genitive" rel="ne"/> </f>
<f nanme="case">
<VAl t >
<sym val ue="noni native"/>
<sym val ue="dative"/>
<sym val ue="accusative"/>
<sym val ue="vocative"/>

Collated comments for_SC4 N033 rev.1 FS.doc - 44/61 - 11/11/03

<none/ >
</VvAt>

</[f>

That is, when the r el attribute has the value ne in the value of an optional feature in a feature
structure, the actual value of that feature may be any of its legal values other than the specified value,
or <none>.

If therel attribute is specified with the valuene for a<nbr >, <nsr >, or <r at e> element for which
the val ueTo attribute is also specified, then the actual range may be any range distinct from that
given. For example, the following means that the number of bathrooms is arange distinct from 3 to 5

(eg.,3t04,3t06,4t05,41t06, 0to 2, etc.).
<f nanme="nunber. of. bat hroons"> <nbr val ue="3" val ueTo="5" rel="ne"/> </f>

Lee Gillam : Section 6.3.1 Equality
In every value space there is a notion of equality, for which the following rules hold:

for any two instances (a, b) of values from the value space, either a
isequal to b, denoted a= b, or ais not equal to b, denoted a/=b ;

thereis no pair of instances (a, b) of values from the value space such
that both a=b and a/=b for every value afrom the value space, a= g

for any two instances (a, b) of values from the value space, a= b if and
only if b=g

for any three instances (a, b, ¢) of values from the value space,
ifa=bandb=c,thena=c.

On every datatype, the operation Equal is defined in terms of the equality
property of the value space, by:

for any values a, b drawn from the value space, Equal (a,b) istrue if a= b, and false otherwise.

5.8.2 Other Inequality Relations [16.9.2]

For the elements <nbr >, <nsr>, <rate>, and <str>, the rel attribute may also take on the
following values; the use of these values for the <st r > element presumes that a particular character
and string ordering (or sorting) convention is understood.
It

The actual value or range is any legal value or range less than the specified value or range.

le
The actual value or range is any legal value or range less than or equal to the specified value
or range.
gt
The actual value or rangeis any legal value or range greater than the specified value or range.
ge

The actua value or range is any legal value or range greater than or equa to the specified
value or range.
These attribute values may be used as shown in the following examples. The first states that the
number of bedrooms is less than 5; the second that an illegal speed is any speed greater than 65 miles
per hour; the third that alot size is in arange which is less than or equal to the range of from 5 to 10

Collated comments for_SC4 N0O33 rev.1 FS.doc - 45/61 - 11/11/03

acres;: the fourth that the last name is any string greater than the empty string (i.e., any nonempty
string, given normal string-ordering conventions); and the fifth that for a feature whose value is a list
of two strings, the first precedes the string ‘M' and the second is the string ‘M', or any string

following it.

<f name="nunber. of . bedroons"> <nbr val ue="5" rel="1t"/> </f>

<f name="il | egal . speed" > <rate val ue="65" unit="mles" per ="hour"
rel="gt"/> </f>

<f name="l|ot.size"> <nsr val ue="5" val ueTo="10" unit="acre" rel="le"/> </f>
<f name="last.nanme"> <str rel="gt"/> </f>

<f name="pairs" org="list"> <str rel="It">M/str> <str rel="ge">M/str>
</f>

5.8.3 Subsumption and Non-subsumption Relations [16.9.3]

When ther el attribute is given the valuessb or ns, the markup expresses the claim that the value
given subsumes, or does not subsume, the actual value for the feature in question.

On the <str> element, these values are used to specify that the string value given in the<str>
element is or is not asubstring of the actual value of the feature.

Simons: Defining subsumption on string is something we did by analogy when developing the
TEI spec. Itisnot astandard practice in the community. Thiswould be a candidate for
simplification.

The first example below specifies that the actual feature value may be any string at al (since the
empty string is a substring of every string), the second that it might be any string in which the string
‘the’ occurs as a substring, and the third that it might be any string in which the string ‘ the' does not
occur as a substring.
<str rel="sb"/>
<str rel ="sb">the</str>
<str rel ="ns">t he</str>
On the <f s> element, the attribute valuessb and ns indicate that the given feature structure does or
does not legally subsume the actual feature structure. By definition, one feature structure subsumes
another if the second feature structure is identical to the first or contains more information than the
first. The default value for ther el attribute of the <f s> element is sb. The subsumption of feature
structures is illustrated by the following four examples; suppose that the ‘person’ and ‘ number'
features are either optional or obligatory in these<f s type="agreenment structure"> example
elements.
<fs id="p3ns" type="agreenent structure">

<f nanme="person"> <symvalue="third"/> </f>

<f name="nunber"> <sym val ue="singular"/> </f>
</fs> <!-- third person singular -->
<fs id="p3nx" type="agreenent structure">

<f name="person"> <symvalue="third"/> </f>
</fs> <l-- third person -->
<fs id="pxns" type="agreenent structure">

<f name="nunber"> <sym val ue="singular"/> </f>
</fs> <!-- singular -->
<fs id="pxnx" type="agreenment structure"/> <l-- -->
The fourth example, pxnx, subsumes all four of the examples, since each contains at least as much
information as does feature structure pxnx. Conversely, the first example, p3ns, subsumes only itself.
Finally, the second and third examples, identified asp3nx and pxns attributes, subsume themselves
and the first feature structure, but not each other.
If both person and number are obligatory features of agreement structure elements, then the last three

8 We say that one range is less than or equa to another if both the value and valueTo attributes of the first are
less than or equal to the corresponding attributes of the second.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 46/61 - 11/11/03

elements in the preceding list have the same interpretation as their counterparts in the following list.
<fs id="p3na" type="agreenent structure">
<f nanme="person"> <symvalue="third"/> </f>
<f name="nunber"> <any/> </f>
</fs> <l-- third person -->
<fs id="pans" type="agreenent structure" >
<f nanme="person"> <any/> </f>
<f name="nunber"> <sym val ue="singular"/> </f>
</fs> <l-- singular -->
<fs id="pana" type="agreenment structure" >
<f name="person"> <any/> </f>
<f name="nunber"> <any/> </f>
</fs><l-- -->
On the other hand, if both person and number are optional features of agreement structures, then those
three elements have the same interpretation as their counterparts in the following list.
<fs id="p3nu" type="agreenent structure">
<f nanme="person"> <symvalue="third"/> </f>
<f nane="nunber"> <uncertain/> </f>
</fs> <l-- 3d person -->
<fs id="puns" type="agreenent structure">
<f nanme="person"> <uncertain/> </f>
<f nanme="nunber"> <sym val ue="singular"/> </f>
</fs> <!-- singular -->
<fs id="punu" type="agreenent structure">
<f nane="person"> <uncertain/> </f>
<f nanme="nunber"> <uncertain/> </f>
</[fs> <l-- -->
That is, if an optional feature is omitted from a feature-structure representation, then that feature may
have any of itslegal values or the value<uncert ai n>.
The value sb is chosen as the default value for ther el attribute of the <f s> element, because it
provides for the most economical means for underspecifying them. One situation in which it may be
preferable to specify <f s rel =" eq" > is when the feature structure has many optional features and it
is known that none of them occurs.
The specification <f s rel =" ns" > is used to denote the feature structures that the specified feature
structure does not subsume. This provides a handy way of saying that a certain combination of
features is not present, for example the combination of third person and singular number, as in the
agreement structure of the English verb form *sink’, understood as a present tense verb form. The
following example expresses the claim that third-person and singular-number features are not both
present in the agreement feature, but makes no further claim about what is present.
<f nanme="agreenent">
<fs id="np3ns" type="agreenment structure" rel="ns">
<f name="person"> <symvalue="third"/> </f>
<f nanme="nunber"> <sym val ue="singular"/> </f>
</fs>
</[f>
In most real situations, of course, one can infer, from the range of possible values for person and
number, what the remaining possibilities are. Suppose, for example, that in the relevant feature
system declaration, the features ‘ person’ and ‘ number" are given the following<vRange> elements:
<vRange><!-- for the PERSON feature -->
<VAl t >
<symval ue="first'/>
<sym val ue=' second' / >
<symvalue="third />
</ vAl t>
</ vRange>
<vRange><!-- for the NUVBER feature -->
<VAl t >
<sym val ue='singul ar'/>

Collated comments for_SC4 N033 rev.1 FS.doc - 47/61 - 11/11/03

<sym val ue='plural'/>
</VvAt>
</ vRange>
Suppose, further, that the person and number features are obligatory in feature structures of the type
agreenent structure. Thenthe element <f s i d="NP3NS" > above is equivalent to the following
aternation; the features whose value is<any> may be omitted, since they are implied by the default
value of sb for ther el attribute in the enclosing <f s> elements.
<vAl t id="pl2na-panp">
<fs id="pl2na" type="agreenent structure">
<f nane="person">
<vAl t > <sym val ue="first"/> <sym val ue="second"/> </vAlt>
</[f>
<f name="nunber"> <any/> </f>
</fs>
<fs id="panp" type="agreenent structure">
<f name="person"> <any/> </f>
<f name="nunber"> <symval ue="plural"/> </f>
</fs>
</ VvAl t>
If, on the other hand, the person and number features were optional in feature structures of type
agreement structure, then the interpretation of an underspecified feature structure will change.
The element <fs i d="NP3NS"> given above is then equivalent to the following aternation; the
features whose value is <uncertai n> may be omitted as they are implied by the default
subsumption relation holding between the structure given and the actual structure.
<vAl't id="pl20nu-punp0">
<fs id="pl20nu" type="agreement structure">
<f nane="person">
<vAl' t > <sym val ue="first"/> <sym val ue="second"/> <none/> </vAlt>
</f>
<f nanme="nunber"> <uncertain/> </f>
</fs>
<fs id="punp0" type="agreenent structure">
<f name="person"> <uncertain/> </f>
<f nane="nunber">
<vAl t > <sym val ue="plural"/> <none/ > </VvA t>
</f>
</fs>
</vAl t>

5.8.4 Relations Holding with Sets, Bags, and Lists [16.9.4]

Therel attribute is also provided for the <f > element, but is designed to be used with that element
only when itsor g attribute (see section 5.5 [16.6] Singleton, Set, Bag and List Collections of Values)
isset, bag, or | i st. When associated with the <f > element, ther el attribute may take on any of
the following four values: eq, ne, sb, and ns. The default value is eq. Consider first the use of the
rel attribute with the <f > element when the given value of the feature is<nul | >.

<f name="extras" org="set"> <null/> </f>

<f name="extras" org="set" rel="ne"> <null/> </f>

<f name="extras" org="set" rel="sb"> <null/> </f>

<f name="extras" org="set" rel="ns"> <null/> </f>

The first example states that the ‘ extras' feature has the null set as its value. The second example
states that the * extras' feature is a set which is not equal to the null set. That is, its actual value might
be any non-null set. The third example states that the ‘ extras' feature has as its value a set of which
the null set is a subset; that is to say, any set at al, including the null set. Note that this is not
equivaent to the following, which states that the extras feature has as its value a single element which
is any legal value for the ‘extras feature, including for example a<str> element containing the
value pool .

<f nanme="extras" org="set"> <any/> </f>

Collated comments for_SC4 N033 rev.1 FS.doc - 48/61 - 11/11/03

Finally, the fourth example states that the ‘ extras' feature has asits value a set of which the null set is
not a subset. Since the null set is a subset of every set, the fourth example in effect claims that the
‘extras' feature has no legal value; it is thus equivalent to the following, which states directly that the
‘extras' feature has no value.

<f name="extras" org="set"> <none/> </f>

Consider next the use of ther el attribute with the <f > element when the given value of the feature is
asingle<st r > element with the content pool :

<f name="extras" org="set"> <str>pool </str> </f>

<f name="extras" org="set" rel ="ne"> <str>pool </str> </f>

<f name="extras" org="set" rel ="sb"> <str>pool </str> </f>

<f name="extras" org="set" rel ="ns"> <str>pool </str> </f>

The first example states that the value of the ‘ extras' feature is a set consisting of a single member,
namely a <str> element containing the value pool . The second example states that the ‘ extras
feature has as its value a set which is not equal to the set consisting of this particular member. It
could, however, be atwo-membered set, one of whose members is some other value. This example is
thus not equivalent to the following, which states that the ‘extras feature has as its value a set
comprising a single member other than a<st r > element with the content pool :

<f name="extras" org="set"> <str rel ="ne">pool </str> </f>

The third example states that the ‘ extras' feature has as its value any set of which the set consisting of
the single member specified isasubset (i.e., any set which contains the element<st r > with the value
pool , and possibly others). Finally, the fourth example states that the * extras' feature has as its value
any set which does not contain this element as a member.

5.8.5 Varieties of Subsumption and Non-subsumption [16.9.5]

Therel valuessb and ns have different meanings depending on whether they occur within a<st r >,
<f s> or <f > element. However, the use of a common name for the value reflects a fundamental
similarity in those meanings. For example, the valuesb can be used in al three elements to indicate
that the actual value is any string, any feature structure, or any set, bag or list, as follows. In the
second example below, ther el attribute has not been specified, since it has the valuesb by default

on <f s> elements.
<str rel="sb"></str>

<fs></fs>

<f name="..." org="set" rel="sb"> <null/> </f>
<f name="..." org="bag" rel="sb"> <null/> </f>
<f name="..." org="list" rel="sb"> <null/> </f>

Because the value sb is not defined for the attributer el on the <nbr >, <nsr > and <r at e> elements,
the indication that a value may be any number, measure or rate is sometimes not quite as simple. Here
is one way of specifying any positive or negative integer numeric values
<vAl t >
<nbr val ue="0" rel
<nbr val ue="0" rel
</VvA t>
The value ns aso is understood in similar ways in the different elements in which it may occur.
Above in this section, the equivalence of the following representations under certain conditions was
shown (thei d attributes and the redundant features with <any/ > values have been omitted).
<f nanme="agreenent">
<fs type="agreenment structure" rel="ns">
<f nanme="person"> <symvalue="third"/> </f>
<f nanme="nunber"> <sym val ue="singular"/> </f>
</fs>
</[f>

"gt" type="int"/>
"le" type="int"/>

9 Typically, there will be no need to use an encoding like this one as the value of afeature, since the
<any> element is available for that purpose. However, in setting up the feature declaration for that
feature, it may be necessary to use such an encoding, precisely so as to provide an interpretation for
the use of the <any> element as the value of that feature.

Collated comments for_SC4 N033 rev.1 FS.doc - 49/61 - 11/11/03

<f name="agreenent">
<vAl t >
<fs type="agreenent structure">
<f nane="person">
<vAl't > <sym val ue="first"/> <sym val ue="second"/> </vAlt>
</[f>
</fs>
<fs type="agreenent structure">
<f name="nunber"> <sym val ue="plural"/> </f>
</fs>
</ vAl t >
</[f>

The value ns has an analogous meaning when the value in question is a set rather than a feature

structure. Recast in such terms, the equivalence above still holds good:
<f nanme="agreenent"” org="set" rel ="ns">

<symval ue="third"/>

<sym val ue="si ngul ar"/ >

</f>
<f name="agreenent" org="set" rel ="sb">
<vAl t >
<vAl't > <sym val ue="first"/> <sym val ue="second"/> </vAl t>
<sym val ue="pl ural "/ >
</vAl t>
</[f>

6 Bibliography

British National Corpus, http://www.hcu.ox.ac.uk/BNC/.

Carpenter, Bob (1992), The Logic of Typed Feature Structures, Cambridge University Press,
Cambridge.

Copestake, Ann (2002), Implementing Typed Feature Structure Grammars, CSLI Publications,
Stanford.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag (1985), Generalized Phrase Structure
Grammar, Harvard University Press, Cambridge, MA.

Ide, Nancy, Jacques Le Maitre, and Jean Veronis (1993), “Outline of a Model for Lexical
Databases”, Information Processing and Management, 29(2): 159-186. Reprinted in
Antonio Zampolli et a. (eds) (2001), Current Issues in Computational Linguistics: In
Honour of Don Walker, Kluwer Academic Publishers, Dordrecht.

Johnson, Mark (1988), Attribute-Value Logic and the Theory of Grammar, CSLI Lecture Notes 16,
Stanford.

Langendoen, D. Terence and Gary F. Simons (1995), “A rationale for the TEI recommendations for
feature-structure markup”, Computers and the Humanities, 29.

Pereira, Fernando C. N. (1987), Grammars and Logics of Partial Information, SRI International
Technical Note 420, SRI International, Menlo Park, CA.

Sag, lvan A. and Thomas Wasow (1999, 2003), Syntactic Theory: A Formal Introduction, CSLI
Publications, Stanford.

Shieber, Stuart M. (1986), An Introduction to Unification-Based Approaches to Grammar, CSLI
Lecture Notes 4, Stanford.

Collated comments for_SC4 N033 rev.1 FS.doc - 50/61 - 11/11/03

Semantics, 31-96, Cambridge University Press.

Simons: The TEI guideline chapters should be referenced as well.
Burnard : There are at least 2 references to the feature system declaration as section 6, but thisis the
bibliography (which, by the way, doesn’t seem to reference TEI P4!)

Erjavec : I'd suggest adding at |east the first HPSG book (Pollard & Sag 98) asit introduces typed FSs
(although quite informally) and set the scene for the subsequent FS boom.

Pollard, Carl J. and Ivan A. Sag (1987), Information-Based Syntax and Semantics CSLI Lecture
Notes 13, Chicago University Press, Chicago.

KATS: add

Collated comments for_SC4 N0O33 rev.1 FS.doc - 51/61 - 11/11/03

Annex A (non-normative)

Examples for Illustration

Consider the problem of specifying the grammatical case, gender and number features of classical
Greek noun forms. Assuming that the case feature can take on any of the five valuesnoni nati ve,
geni tive, dative, accusative and vocati ve; that the gender feature can take on any of the
three values f emi ni ne, mascul i ne, and neut er ; and that the number feature can take on either of
the values si ngul ar and pl ur al , then the following may be used to represent the claim that the
noun form ???? goddesses has accusative case, feminine gender and plural number.
<fs type="word structure">

<f nanme="case"> <sym val ue="accusative"/> </f>

<f nanme="gender"> <sym val ue="feni nine"/> </f>

<f name="nunber"> <sym val ue="plural"/> </f>
</fs>
An XML parser by itself cannot determine that particular values do or do not go with particular
features; in particular, it cannot distinguish between the presumably legal encodings in the preceding
two examples and the presumably illegal encoding in the following example.
<l-- *PRESUVABLY | LLEGAL* ... -->
<fs type="word structure">

<f nanme="case"> <symvalue="fenm nine"/> </f>

<f nanme="gender"> <sym val ue="accusative"/> </f>

<f nanme="nunber"> <m nus/> </f>
</fs>
There are two ways of attempting to ensure that only legal combinations of feature names and values
are used. Firgt, if the total number of legal combinations is relatively small, one can ssimply list all of
those combinations in <f Li b> elements (together possibly with <f vLi b> elements), and point to
them using thef eat s attribute in the enclosing <f s> element. This method is suitable in the situation
described above, since it requires specifying atotal of only ten (5 + 3 + 2) combinations of features
and values. Further, to ensure that the features are themselves combined legally into feature
structures, one can put the legal feature structures inside <f sLi b> elements. A total of 30 feature
structures (5 3 2) is required to enumerate all the legal combinations of individual case, gender and
number values in the preceding illustration. Of course, the legality of the markup requires that the
f eat attributes actually point at legally defined features, which an XML parser, by itself, cannot
guarantee.
A more general method of attempting to ensure that only legal combinations of feature names and
values are used is to provide a feature system declaration that includes a<val Range> element for
each feature one uses. Here is a sample<val Range> element for the ‘ case' feature described above;
for further discussion of the <val Range> element, see chapter 6 [26] Feature System Declaration;
the <vAl t > element is discussed in section 5.6 [16.7] Alternative Features and Feature Values.

[Note: <vAlt> may be replaced by a generic <alt> mechanism provided by the Linguistic

Annotation Framework; e.g. <alt oper="one” >...</alt>]
<l-- VALRANGE specification for CASE feature -->

Simons: But a generic <alt> mechanism could not constrain the kinds of values that can occur
in particular contexts. For instance, in a<fs>, only <f>s are alowed, so an <fAlt> allows
only <f>sin side of it. Whereasin an <f>, only feature values (and not <f>s) are alowed, so
a<vAlt> only allows feature values.

The alternatives within feature structures are not generic alternatives. They are specific
subtypes, namely, they are either aternations of features, or they are alternations of values.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 52/61 - 11/11/03

Thus, ageneral <alt> seems like the wrong thing to do.

<val Range>
<VAl t >
<sym val ue=' noni native' />
<sym val ue='genitive' />
<sym val ue='dative' />
<sym val ue=' accusative' />
<sym val ue='vocative'/>
</ vAl t >
</ val Range>
Similarly, to ensure that only legal combinations of features are used as the content of feature
structures, one should provide <f sConst r ai nt > elements for each of the types of feature structure
one employs. For discussion of the <f Decl > and <f sConst r ai nt > elements, see chapter 6 [26]
Feature System Declaration. Validation of the feature structures used in a document based on the
feature-system declaration, however, requires that there be an application program that can use the
information contained in the feature-system declaration.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 53/61 - 11/11/03

Annex B (informative)

Basic Operations on Feature Structures

Subsumption

Some feature structures carry less information than others. The extreme case, perhaps the most
uninteresting case, is the empty feature structure [] sometimes called variable that carries no
information at all. For more interesting cases, consider the following two feature structures:

D

i
o
PHON ‘love’

Il. .'."I'J."l’.'I
rpHON: ‘love’

POS: nout

The feature structure (@) says that the word is pronounced or spelled ‘love’ and that's all. But the
feature structure (b) says more than that by providing the additional information that it isa noun.
Hence, (a) is said to be less informative than (b).

To describe such a relation among some feature structures, atechnical term is introduced that is

called subsumption. In the above case, (a) is said to subsume (b). Since it carries no information, the
empty feature structure [] subsumes not only the feature structures (a) and (b), but also any other
feature structures.
Intuitively speaking a feature structure A subsumes a featurestructure B if A is not more informative
than B, thus subsuming all feature structures that are at least equally informative asitself. Formally
speaking, the subsumption relation is a partial ordering over feature structures and is defined
recursively asfollowse:

Definition of Subsumption:

Given two feature structures, A and B, Aissaid to subsume B, written as A O B in case that

i. atomic case: if they are both atomic, then A= B.
ii. complex case: if they are both complex, then the following conditions are satisfied:

A. For every path in A, the same path existsin B and its value in A subsumes its value in
B. for every pair of paths that is structure-sharing in A, the same pair of paths is
structure-sharing in B, and

C. for every type assigned by A to a path subsumes the typeassigned to the same path in
B in the type ordering.

Clause (i) means that an atomic feature structure neither subsumesnor is subsumed by a different

10 Carpenter (1992: 43) claims that the subsumption relation is a pre-ordering on the collection of feature
structure “ because it is possible to have two distinct feature structuresthat mutually subsume each other”.

Collated comments for_SC4 N033 rev.1 FS.doc - 54/61 - 11/11/03

atomic feature structure (provided that it is not the empty feature structure). Each of the three
conditions A, B, and C can be illustrated as below:

(2) Condition A on paths

PHON: ‘loves’ C |rHON: ‘loves’

{ PJ:]:: :iz'ni“ { {1-1-:1:: :h-rlﬂ
SYN: |AGR: . AGR: ,
NUM: S SYN: NUM: Sg

A f’[TENSE; preseiit JJ

There are three paths in A: <pHoN, SYN AGR PER, SYN AGR NUM>, These paths exist in B and each of their
values are the same. Hence, A subsumes B by satisfying Condition A with the other two conditions
being inapplicable-.

(3) Condition B on structure sharing

The two feature structures above are cited in Carpenter (1992: 38, 39) as cases that support the
cyclicity of feature structures. Here, A subsumes B because every path of shared structuresin A is
also found in B (Condition B), while satisfying the other two conditions. The following graphs show
this relation more clearly.

(4) Cyclicity

ARG
: }
false false
’ ARG :
ARG-
B. | >
false

Burnard : Talking of DAGs, I'm not sure that this mechanism can or should support cyclic
graphs. Thereis a casual reference to these in footnote 3 which | think needs expansion, or
removal.

(5) Condition C on type ordering

This condition applies only to typed feature structures under the assumption of some kind of type

11 Thetags A and B are attached to features structures for our present discussionsonly.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 55/61 - 11/11/03

inheritance hierarchy assumed. Pronouns, proper nouns, and common nouns are subtypes of the
supertype noun. Hence, all these subtypes share some properties of each being a noun. Thus, the
following is a simple exampl e of subsumption:

(6) Case involving type ordering

o C name
PHON: ‘Mary' rpHON: ‘Mary’
PER: 3rd FER: 3rd
AGR: : :
NUM: Sg AGR: [NUM: Sg
1 &
GENDER; feminme
- BL J
wlhere nown L name

The type of B is a subtype of the type A, thus A is considered assubsuming B. Furthermore, B has
an extra piece of information about the gender. Hence, A properly subsumes B.

Unification

Some feature structures are compatible with some others, while there are conflicting cases. Consider
the following three avm's;

(7
[x :.|-:I; [3-1-:1:; :ﬁr-iﬂ

TECLLTE
NUM: Sg
AGH: : Sl
L fenmnme

il
A
5%
GENDER: J
5

e TEA AT

PER: 3rd
AGR? o
GENDER: INasculine

The feature structure A is compatible with B and also with C. But the feature structures B and C
are incompatible because their information about the gender of a noun is conflicting.
Incompatibility may also arise when there is atype difference, asshown below:

rr

(8)
i _?Ir_llll?l i
PER: 3rd
VORI
BTN g
l![L -
]:I_ i (3) i
[m-‘.u: Iil'-]:|
SLE) 3 ,
NUM: Sp
! L -

Collated comments for_SC4 N0O33 rev.1 FS.doc - 56/61 - 11/11/03

The feature structures E and F may have the same agreement features, but they are incompatible
because their types are different: one is anoun, but the other a verb.

Compatible feature structures often represent different aspects of information from different
sources. Merged together, they may convey a more coherent picture of information. This process of
information merge is captured by the operational process of unifying two compatible feature
structures, FS and FS;, represented FS, 0 FS,. Compatible feature structures can be unified together
to form a more (or at least equally) informative feature structure. The feature structure A, for
instance, can be unified with C, yielding alittle bit moreenriched feature structure D.

(9) Unified feature structure

THoarl
NUM: Sg
AGR: |PER; 3rd

GENDER: masculine

Pt J

Unification normally adds information as illustrated just now. Butthe identical features may unify
without adding any further information. The empty feature structure may unify every featurestructure
without changing the content of the latter, thusformally treated as theidentity element of unification.

The operation of unification gets complicated when it involves shared structures. Consider the
following example:

(10) Unification involving reentrancy

word | .""-'i" TS
PHON: “fish’ agr

frd AR AGR-CAT: |NUM: plural

" i PER: 3rd
AGR-CAT: |1 I
FPER: ard H

. i
.r."r.l_n"r.'I
pHON: ‘fish’
CAT: noun
agr
AGR-cAT: O PER: 3rd
NUM; plural
wore .'I
SURIT:
Acr-caT: [
_,Ir— .

The unification of feature structures G and H resulted in a feature structure |. This unification
involves structure sharing. Here, the value of acr-cat of H is unified with the value of the first

Collated comments for_SC4 N033 rev.1 FS.doc - 57/61 - 11/11/03

occurrence of acr-cat of G that is afeature structure tagged with the boxed integer 1. Furthermore, on
the assumption that the type word is a lower type of the type phrase, the unified feature structure | is
marked as of being the typeword.

Collated comments for_SC4 N033 rev.1 FS.doc - 58/61 - 11/11/03

Annex C (normative)

Feature Structure DTD

Burnard : The DTD as presented here isincomplete: several of its elements are unreachable. | think a
tag library style presentation might be more helpful.

Note: %0m.RR;, %a.global (but that may be a mistake, since we still need “id’, at least); attributes
and TEIform attributes removed from TEI original.

<l-- 16.2: Feature structures, binary val ues-->
<IELEMENT fs ((f | fAIt | alt)*)>

Simons: Does <alt> mean something different than <fAlt> in this context?

<I ATTLI ST fs

%. gl obal ;

type CDATA #l MPLI ED

feats | DREFS #| MPLI ED

rel (eq|ne|sb|ns) "sb">
<IELEMENT f (null | (plus | minus | any | none | dft | uncertain | sym |
nbr | msr | rate | str | vAIt | alt | fs)*)>

Simons: A parameter entity would be nice. Thislist appears many timesinthe DTD.

<! ATTLI ST f
%. gl obal ;
name NMIOKEN #REQUI RED
org (single|set]|bag|list) #l MPLI ED
rel (eq|ne|sb|ns) "eq"
fVal | DREFS #| MPLI ED>
<! ELEMENT pl us EMPTY>
<I ATTLI ST pl us
%. gl obal ; >

<l-- end of 16.2-->

<l-- 16.3: Feature libraries-->
<IELEMENT fLib ((f | fAIt)*)>
<! ATTLI ST fLib

%. gl obal ;

type CDATA #l| MPLI ED>
<l ELEMENT fsLib ((fs | vAIt)*)>
<! ATTLI ST fsLib

%. gl obal ;
type CDATA #| MPLI ED>
<l ELEMENT fvLib ((plus | minus | any | none | dft | uncertain | null | sym

| nbr | mer | rate | str | vAIt)*)>
<I ATTLI ST fvLib

%. gl obal ;

type CDATA #| MPLI ED>
<l-- end of 16.3-->

Collated comments for_SC4 N0O33 rev.1 FS.doc - 59/61 - 11/11/03

<l-- 16.4: Synbolic, etc. values-->
<l ELEMENT sym EMPTY>
<I ATTLI ST sym
%. gl obal ;
val ue CDATA #REQUI RED
rel (eq|ne) "eq">
<! ELEMENT nbr EMPTY>
<! ATTLI ST nbr
%. gl obal ;
val ue CDATA #REQUI RED
val ueTo CDATA #l MPLI ED
rel (eqlne|llt]|le|lgt|ge) "eq
type (int|real) # MPLI ED>
<! ELEMENT nsr EMPTY>
<! ATTLI ST nsr
%a. gl obal ;
val ue CDATA #REQUI RED
val ueTo CDATA #I MPLI ED
uni t CDATA #REQUI RED
rel (eqlne|llt]|le]gt|ge)
type (int|real) # MPLI ED>
<! ELEMENT rate EMPTY>
<I ATTLI ST rate
%. gl obal ;
val ue CDATA #REQUI RED
val ueTo CDATA #l MPLI ED
uni t CDATA #l MPLI ED
per CDATA #REQUI RED
rel (eqlne|gt|ge|llt|le) "eq
type (int|real) # MPLI ED>
<! ELEMENT str (#PCDATA) >
<! ATTLI ST str
%. gl obal ;
rel (eq|ne|sblns|lt|lelgt|ge) "eq">
<l-- end of 16.4-->

eq

<!-- 16.6: Null val ues-->
<! ELEMENT nul |l EMPTY>
<!-- end of 16.6-->

<l-- 16.7: Alternative features and feature val ues-->
<IELEMENT fAIt ((f | fs | fAt), (f | fs | fAIt)+)>
<I ATTLIST fA't

%. gl obal ;

mut Excl (Y| N) # MPLI ED>
<IELEMENT VvAI't ((plus | minus | any | none | dft | uncertain | null | sym|
nbr | msr | rate | str | vAIlt | fs), (plus | mnus | any | none | dft |
uncertain | null | sym]| nbr | mer | rate | str | VAt | fs)+)>
<I ATTLI ST vAl' t

%. gl obal ;

mut Excl (Y| N) #| MPLI ED>
<l-- end of 16.7-->

<l-- 16.8: Boolean, default, uncertainty val ues-->
<! ELEMENT any EMPTY>

<! ELEMENT none EMPTY>

<! ELEMENT dft EMPTY>

<! ELEMENT uncertai n EMPTY>

<l-- end of 16.8-->

Collated comments for_SC4 N033 rev.1 FS.doc - 60/61 - 11/11/03

Burnard : Further Comments:

There are at least two references to the linking mechanisms defined in P4. As these mechanisms are
likely to be revised quite substantially at P5, | think it might be advisable to make some explicit
statement about which of the various possible mechanisms is required by this standard. Some
reference to xLink should also be included.

Lee Gillam: Further Comments:

From an implementation persepective, it makes sense to declare the various
elements of feature structures and their operations (which 1'd suggest
forms akey part of the core rather than bringing up the rear in an annex).

| also think it would work well to keep the notation away from the
SGML/XML-based representation of the notation (which gives a cluttered
feel at present). In keeping clean of the XML representation, which
realistically istargeted at machine processing, although for some reason
humans seem to like the effort of parsing it also, the feature

structure standard would be able to provide asimilar style/vocabulary
approach already published in SO 16642 (As of today, officially known
inthe UK as BS SO 16642 - Hi Laurent). I'd go as far as to suggest
putting the XML representation as an informative annex, where items
refer to the relevant defining section, and perhaps operations and results
can?be shown accordingly.

Collated comments for_SC4 N0O33 rev.1 FS.doc - 61/61 - 11/11/03

