
One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

One Document Does it all

Lou Burnard and Sebastian Rahtz

TEI

October 2005

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

This talk gives an overview of the ODD (One Document
Does it all) XML documentation system developed as a part
of TEI P5, explaining the motivation and development of this
system.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Literate programming ODD-style

The TEI Guidelines, its DTD, and its schema fragments, are
all produced from a single XML resource containing:

1 Descriptive prose (lots of it)
2 Examples of usage (plenty)
3 Formal declarations for components of the TEI Abstract

Model:
elements and attributes
modules
classes and macros

4 We call this resource an ODD (One Document Does it
all) although the master source is instantiated as many
XML mini-documents.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

So what?

The TEI scheme can only be used by customizing it.
Customizations are also expressed in the ODD language
For example:

<schemaSpec ident="myTEIlite">
<desc>This is TEI Lite with simplified heads</desc>

<moduleRef name="teistructure"/>
<moduleRef name="linking"/>
<moduleRef name="core"/>
<moduleRef name="teiheader"/>
<elementSpec ident="head" mode="change">

<content><rng:text/></content>
</elementSpec>

</schemaSpec>

produces something like TEI Lite, with a slight change

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

ODD processors

We supply a library of XSLT scripts that can generate

The book in canonical TEI XML format
The book in HTML or PDF
RelaxNG, DTD, or W3C schema fragments

The same library is used by the new customization
layer to generate

project-specific documentation
project-specific schemas
translations into other (human) languages

We use eXist as database for extracting material from
the P5 sources

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

The TEI abstract model

The TEI abstract model sees a markup scheme (a
schema) as consisting of a number of discrete modules,
which can be combined more or less as required.

A schema is made by combining references to modules
and optional element over-rides.

Each element declares the module it belongs to:
elements cannot appear in more than one module.

Each module extends the range of elements and
attributes available by adding new members to existing
classes of elements, or by defining new classes.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

The TEI class system

Class membership can do two distinct things for an
element:

1 give it some attributes
2 allow it to join a ‘club’

Content models reference ‘clubs’ rather than specific
elements (wherever possible)

Content models are named patterns, distinct from
element names

(There are also special named patterns for common
content models such as macro.phraseSeq)

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Expression of TEI content models

Beyond the class system, TEI elements have to be defined.
How?

1 continue (as in P4) to use ‘raw’ XML DTD language
2 maintain in DTD language but transform to some other

schema language at the point of delivery
3 transform to some other schema language for

maintenance and delivery
4 invent an entirely new abstract language for later

transformation to some schema language

We chose a combination of 3 and 4 — revise our abstract
language to use RelaxNG for content modelling (only).

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Why that combination?

Expressing constraints in XML language is too
attractive to forego

We knew we would want namespaces sooner rather
than later

A clamour for better datatyping

The schema languages are so good, it is silly to
reinvent them

But we like our class system and literate programming

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

DTD vs Relax NG vs W3C Schema

DTDs are not XML, and need specialist software

W3C schema is not consistently implemented, is poorly
documented, and looks over-complex

Relax NG on the other hand...

uncluttered design
good documentation
multiple open source 100%-complete implementations
ISO standard
useful features for multipurpose structural validation
Compelling leadership (can James Clark do wrong?)

No contest. . .

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

What does an ODD look like?

<elementSpec module="spoken" ident="pause">
<classes>

<memberOf key="model.divPart.spoken"/>
<memberOf key="att.timed"/>
<memberOf key="att.typed"/>

</classes>
<content>

<rng:empty xmlns:rng="\protect .\kern \fontdimen 3\font .\kern \fontdimen 3\font .\kern \fontdimen 3\font "/>
</content>

<attList>
<attDef ident="who" usage="opt">
<datatype>

<rng:ref name="data.pointer"/>
</datatype>

<valDesc>A unique identifier</valDesc>
<desc>supplies the identifier of the
person or group pausing.
Its value is the identifier of a <gi>person</gi>
or <gi>persGrp</gi> element in the TEI header.
</desc>

</attDef>
</attList>
<desc>a pause either between or within utterances.</desc>

</elementSpec>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

... from which we generate

element pause { pause.content, pause.attributes }
pause.content = empty
pause.attributes =

att.global.attributes,
att.timed.attributes,
att.typed.attributes,
att.ascribed.attributes,
[a:defaultValue = "pause"] attribute TEIform { text }?

model.divPart.spoken |= pause
att.timed |= pause
att.typed |= pause
att.ascribed |= pause

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

.. which translates to

<!ELEMENT %n.pause; %om.RR; EMPTY>
<!ATTLIST %n.pause;

%att.global.attributes;
%att.timed.attributes;
%att.typed.attributes;
%att.ascribed.attributes;
TEIform CDATA ’pause’ >

<!ENTITY % model.divPart.spoken
"%x.model.divPart.spoken; %n.event; | %n.kinesic;
| %n.pause; | %n.shift; | %n.u;
| %n.vocal; | %n.writing;">

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

... and, indeed, to

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Generation of alternate outputs

1 Relax NG schema fragments are generated by an
XSLT transform

2 ... and progressively flattened and simplified by a
further set of XSLT transforms

3 DTDs, compact Relax NG, and W3C Schema are all
generated using James Clark’s trang (but not
necessarily from the same inputs)

Vocabularies like MathML and SVG inclusion are managed
by simply <include> ing the relevant RelaxNG grammars,
each in their own namespace.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Customizing the TEI

The TEI has over 20 modules. A working project will:

Choose the modules they need

Probably narrow the set of elements within a module

Probably add local datatype constraints

Possibly add new elements

Possibly localize the names of elements

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

We can do all that in ODD

<schema>
<moduleRef name="tei"/>
<moduleRef name="header""/>
<moduleRef name="textstructure"/>
<moduleref name="linking"/>
</schema>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

From which we can generate...

<grammar ns="http://www.tei-c.org/P5/"
xmlns="http://relaxng.org/ns/structure/1.0"
datatypeLibrary=

"http://www.w3.org/2001/XMLSchema-datatypes">
<include href="Schema/tei.rng"/>
<include href="Schema/header.rng"/>
<include href="Schema/textstructure.rng"/>
<include href="Schema/linking.rng"/>
</grammar>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

More interestingly..

<schema>
<moduleRef name="teiheader"/>
<moduleref name="verse"/>
<!-- add a new element -->
<elementSpec ident="soundClip">
<classes memberOf="tei.data"/>

<attList>
<attDef ident="location">
<datatype><rng:ref name="data.pointer"/></datatype>
<valDesc>A location path</valDesc>
<desc>supplies the location of the clip</desc>
</attDef>

</attList>
<desc>includes an audio object in a document.</desc>

</elementSpec>
<!-- change an existing element -->
<elementSpec ident="head" mode="change">
<content><rng:text/></content>
</elementSpec>
</schema>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Uniformity of description

modules, elements, attributes, value-lists are treated
uniformly

each has an identifier, a gloss, a description, and one
or more equivalents

each can be added, changed, replaced, deleted within
a given context

for example, membership in the att.type class gives you
a generic TYPE, which can be over-riden for specific
class members

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Overriding a value-list

<elementDecl ident="list" module="core">
<classes>

<memberOf key="att.typed"/>
</classes>
<!--... -->
<attDef ident="type" mode="replace">
<valList>
<valItem ident="ordered">Items are ordered</valItem>
<valItem ident="bulleted">Items are bulleted</valItem>
<valItem ident="frabjous">Items are frabjous</valItem>
</valList>
</attDef>
</elementDecl>

... not as easy as it looks (lazy evaluation rules)

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Our gesture towards ontological mapping

The <equiv> element supplies a URI which identifies an
equivalent concept (not a name) in some externally-defined
ontology, e.g.

ISO data category registry

CIDOC conceptual reference model

Wordnet

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Using other vocabularies

Namespaces help with the obvious cases (e.g.
mathML, SVG...)

But they don’t help where there is overlap (e.g. HEML)

And they enforce an ‘Us and Them’ mentality

Can we do better?

