
One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

One Document Does it all

Lou Burnard and Sebastian Rahtz

TEI

October 2005

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Literate programming ODD-style

The TEI Guidelines, its DTD, and its schema fragments, are
all produced from a single XML resource containing:

1 Descriptive prose (lots of it)
2 Examples of usage (plenty)
3 Formal declarations for components of the TEI Abstract

Model:
elements and attributes
modules
classes and macros

4 We call this resource an ODD (One Document Does it
all).

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

So what?

The TEI scheme can only be used by customizing it and
customizations are also expressed in the ODD language.
For example:

<schemaSpec ident="myTEIlite">
<desc>This is TEI Lite with simplified heads</desc>
<moduleRef key="tei"/>
<moduleRef key="core"/>
<moduleRef key="textstructure"/>
<moduleRef key="header"/>
<moduleRef key="linking"/>
<elementSpec ident="head" mode="change">
<content>
<rng:text/>
</content>
</elementSpec>

</schemaSpec>

produces something like TEI Lite, with a slight change

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

ODD processors

We maintain a library of XSLT scripts that can generate

The TEI Guidelines in canonical TEI XML format
The Guidelines in HTML or PDF
RelaxNG, DTD, or W3C schema fragments

The same library is used by the customization layer to
generate

project-specific documentation
project-specific schemas
translations into other (human) languages

We use eXist as a database for extracting material from
the P5 sources

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

The TEI abstract model

The TEI abstract model sees a markup scheme (a
schema) as consisting of a number of discrete
modules, which can be combined more or less as
required.
A schema is made by combining references to modules
and optional element over-rides or additions
Each element declares the module it belongs to:
elements cannot appear in more than one module.
Each module extends the range of elements and
attributes available by adding new members to existing
classes of elements, or by defining new classes.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

The TEI class system

Class membership can do two distinct things for an
element:

1 give it some attributes
2 allow it to join a ‘club’

Content models reference ‘clubs’ rather than specific
elements (wherever possible)
Content models are named patterns, distinct from
element names
(There are also special named patterns for common
content models such as macro.phraseSeq)

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Expression of TEI content models

Within the class system, TEI elements have to be defined
using some language notation; choices include:

1 using ‘raw’ XML DTD language
2 using W3C Schema language
3 using the Relax NG schema language
4 inventing an entirely new abstract language for later

transformation to specific schema language

We chose a combination of 3 and 4 — using our abstract
language, but switching to Relax NG for content modelling.

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Why that combination?

Expressing constraints in XML language is too
attractive to forego
There is a clamour for better datatyping than DTDs
have
The schema languages are so good, it is silly to
reinvent them
But we like our class system and literate programming

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

DTD vs Relax NG vs W3C Schema

DTDs are not XML, and need specialist software
W3C schema is not consistently implemented, is poorly
documented, and looks over-complex
Relax NG on the other hand...

uncluttered design
good documentation
multiple open source 100%-complete implementations
ISO standard
useful features for multipurpose structural validation
Compelling leadership (can James Clark do wrong?)

No contest. . .

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

What does an ODD look like?

<elementSpec module="spoken" ident="pause">
<classes>
<memberOf key="model.divPart.spoken"/>
<memberOf key="att.timed"/>
<memberOf key="att.typed"/>
</classes>
<content>
<rng:empty/>

</content>
<attList>
<attDef ident="who" usage="opt">
<gloss>A unique identifier</gloss>
<desc>supplies the identifier of the
person or group pausing.
Its value is the identifier of a <gi>person</gi>
or <gi>persGrp</gi> element in the TEI header.
</desc>

<datatype>
<rng:ref name="data.pointer"/>
</datatype>
</attDef>
</attList>
<desc>a pause either between or within utterances.</desc>

</elementSpec>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

... from which we generate

element pause pause.content, pause.attributes
pause.content = empty
pause.attributes =
att.global.attributes,
att.timed.attributes,
att.typed.attributes,
att.ascribed.attributes,
[a:defaultValue = "pause"] attribute TEIform text ?
model.divPart.spoken |= pause
att.timed |= pause
att.typed |= pause
att.ascribed |= pause

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

.. or

<!ELEMENT %n.pause; %om.RR; EMPTY>
<!ATTLIST %n.pause;
%att.global.attributes;
%att.timed.attributes;
%att.typed.attributes;
%att.ascribed.attributes;
TEIform CDATA ’pause’ >

<!ENTITY % model.divPart.spoken
"%x.model.divPart.spoken; %n.event; | %n.kinesic;
| %n.pause; | %n.shift; | %n.u;
| %n.vocal; | %n.writing;">

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

... and, indeed, to

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

A more complex example

<elementSpec module="corpus" ident="birth">
<gloss>Birth details</gloss>
<desc>contains information about a person’s birth,
such as its date and place.</desc>
<classes>
<memberOf key="model.personPart"/>
</classes>
<content>
<rng:ref name="macro.phraseSeq"/>
</content>
<attList>
<attDef ident="date" usage="opt">
<desc>specifies the date of birth in an ISO standard form

(yyyy-mm-dd).</desc>
<datatype>
<rng:ref name="data.temporal"/>
</datatype>
</attDef>
</attList>

</elementSpec>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Which produces . . .

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

And some XSD for a change . . .

<xs:element name="birth">
<xs:annotation>
<xs:documentation>(Birth details) contains information

about a person’s birth, such as its date
and place.</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:complexContent>
<xs:extension base="ns1:birth.content">
<xs:attributeGroup ref="ns1:birth.attributes"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:complexType name="birth.content">

<xs:complexContent>
<xs:extension base="ns1:macro.phraseSeq"/>

</xs:complexContent>
</xs:complexType>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Customizing the TEI

The TEI has over 20 modules. A working project will:

Choose the modules they need
Probably narrow the set of elements within a module
Probably add local datatype constraints
Possibly add new elements
Possibly localize the names of elements

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

We can do this in ODD

A simple selection of modules
<schema>
<moduleRef key="tei"/>
<moduleRef key="core"/>
<moduleRef key="header"/>
<moduleRef key="textstructure"/>
<moduleRef key="linking"/>

</schema>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

More interestingly..

<schema>
<moduleRef key="header"/>
<moduleRef key="verse"/>
<elementSpec ident="soundClip">
<classes>
<memberOf key="tei.data"/>
</classes>
<attList>
<attDef ident="location">
<desc>supplies the location of the clip</desc>
<datatype>
<rng:ref name="data.pointer"/>
</datatype>
</attDef>
</attList>
<desc>includes an audio object in a document.</desc>
</elementSpec>
<elementSpec ident="head" mode="change">
<content>
<rng:text/>
</content>
</elementSpec>

</schema>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Uniformity of description

modules, elements, attributes, value-lists are treated
uniformly
each has an identifier, a gloss, a description, and one
or more equivalents
each can be added, changed, replaced, deleted within
a given context
for example, membership in the att.type class gives
you a generic type attribute, which can be over-ridden
for specific class members

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Overriding a value-list

<elementSpec ident="list" module="core">
<classes>
<memberOf key="att.typed"/>
</classes>
<attDef ident="type" mode="replace">
<valList type="closed">
<valItem ident="ordered">
<gloss>Items are ordered</gloss>
</valItem>
<valItem ident="bulleted">
<gloss>Items are bulleted</gloss>

</valItem>
<valItem ident="frabjous">
<gloss>Items are frabjous</gloss>

</valItem>
</valList>
</attDef>

</elementSpec>

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Ontological mapping

The <equiv> element supplies a URI which identifies an
equivalent concept (not a name) in some externally-defined
ontology, e.g.

ISO data category registry
CIDOC conceptual reference model
Wordnet

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

You don’t have to write XML: Roma (1)

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Roma (2)

One
Document
Does it all

Lou Burnard
and Sebastian

Rahtz

Roma (3)

