TEI P5:
Guidelines for Electronic Text
Encoding and Interchange

by the TEI Consortium

Originally edited by C.M. Sperberg-McQueen and Lou
Burnard for the ACH-ALLC-ACL Text Encoding Initiative

Now entirely revised and expanded under the supervision
of the Technical Council of the TEI Consortium

edited by Lou Burnard and Syd Bauman
1.4.1. Last updated on July 1st 20009.

Oxford — Providence — Charlottesville — Nancy
2008

The TEI Consortium

The TEI Guidelines

ii

TEI P5: — Guidelines for Electronic Text Encoding and Interchange

edited by Lou Burnard and Syd Bauman

2008

The TEI Guidelines

1.4.1. Last updated on July 1st 2009.

Copyright 2009 TEI Consortium.

This is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This material is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose.
See the GNU General Public License for more details.

A copy of the GNU General Public License is stored on the TEI web site along with
this file; you can also contact the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307, USA, for a copy.

For information about the TEI, including contact details, consult the TEI web site at
http://www.tei-c.org/.

ii

http://www.tei-c.org/P5/

edited by Lou Burnard and Syd Bauman

Contents

iii

The TEI Guidelines

iv

pud @

Releases of the TEI Guidelines

P1 1990, C.M. Sperberg-McQueen and Lou Burnard
P2 1992, C.M. Sperberg-McQueen and Lou Burnard
P3 1994, C.M. Sperberg-McQueen and Lou Burnard
P4 2001, Lou Burnard, Syd Bauman, and Steven DeRose

P5 2007, Lou Burnard and Syd Bauman

i. Releases of the TEI Guidelines

vi

Dedication

In memoriam

Donald E. Walker

22 November 1928 - 26 November 1993
Antonio Zampolli

1937 - 22 August 2003

vii

ii. Dedication

viii

Preface and Acknowledgments

This publication constitutes the fifth distinct version of the Guidelines for Electronic Text Encoding and Inter-
change, and the first complete revision since the appearance of P3 in 1994. It includes substantial amounts of
new material and a major revision of the underlying technical infrastructure. With this version, the Guidelines
enter a new stage in their development as a community-maintained open source project. This edition is the
first version to have benefitted from the close overview and oversight of an elected TEI Technical Council. The
editors are therefore particularly pleased to acknowledge with gratitude the hard work and dedication put into
this project by the Council over the last five years.

The Chair of the TEI Board sits on the Technical Council, and the Board also nominates one other member to
the Council. The other Council members are all elected by the Consortium membership, and serve periods of
up to two years at a time. The Board nominates the Chair of the Technical Council from among its members.
The names and affiliations of all Council members who served during the production of this edition of the
Guidelines are listed below.

Chair

e 2002-3: John Unsworth (University of Virginia)
¢ 2003-7: Christian Wittern (Kyoto University)

Board Members
e 2002-7: Sebastian Rahtz (University of Oxford)
o 2004-5: Julia Flanders (Brown University)
o 2006: Matthew Zimmerman (New York University)
o 2007: Daniel O'Donnell (University of Lethbridge)

Elected Members
o 2003-6: Alejandro Bia (University of Alicante)
« 2004-6; 2006-7: David Birnbaum (University of Pittsburgh)
« 2007: Tone Merete Bruvik (University of Bergen)
« 2007: Arianna Ciula (King's College London)
* 2005-7: James Cummings (University of Oxford)
e 2002-7: Matthew Driscoll (University of Copenhagen)
 2002-4: David Durand (Ingenta plc)

ix

iii. Preface and Acknowledgments

 2002-4: Tomas Erjavec (Jozef Stefan Institute, Ljubljana)

o 2002: Fotis Jannidis (University of Munich)

 2006: Amit Kumar (University of Illinois at Urbana-Champaign)

o 2002: Martin Mueller (Northwestern University)

« 2006-7: Dorothy Porter (University of Kentucky)

o 2002-3: Merillee Proffitt (Research Libraries Group)

« 2002: Peter Robinson (De Montfort University)

o 2002: Geoftrey Rockwell (Macmaster University)

o 2002-7: Laurent Romary (University of Nancy; Max Planck Digital Library)
e 2003-7: Susan Schreibman (University of Maryland)

o 2004-5: Natasha Smith (University of North Carolina at Chapel Hill)

o 2006-7: Conal Tuohy (Victoria University of Wellington)

o 2004-5: Edward Vanhoutte (Royal Academy of Dutch Language and Literature)
¢ 2005-7: John Walsh (Indiana University)

o 2002-5: Perry Willett (Indiana University)

The bulk of the Council's work has been carried out by email and by regular telephone conference. In
addition, the Council has held six two-day face-to-face meetings. During production of P5, these meetings
were generously hosted by the following institutions:

King's College, London (2002)

Oxford University Computing Services (2003)

Royal Academy of Dutch Language and Literature, Ghent (2004)
AFNOR: Association frangaise de normalisation, Paris (2005)

Institute for Research in Humanities, Kyoto University (2006)
Berlin-Brandenburgische Akademie der Wissenschaften, Berlin (2007)

During the production of TEI P5, the Council chartered a number of smaller workgroups and similar
activities, each of which made significant contribution to the intellectual content of the work. Active members
of these are listed below:

Character Set Workgroup Active between July 2001 and January 2005, this group revised and developed the
recommendations now forming chapters vi Languages and Character Sets and 5. Representation of Non-
standard Characters and Glyphs. It was chaired by Christian Wittern, and its membership included:
Deborah Anderson (Berkeley); Michael Beddow (independent scholar); David Birnbaum (Pittsburgh
University); Martin Duerst (W3C/Keio University); Patrick Durusau (Society of Biblical Literature);
Tomohiko Morioka (Kyoto University); and Espen Ore (National Library of Norway).

Meta Taskforce Active between February 2003 and February 2005, this group developed the material now
forming 22. Documentation Elements. It was chaired by Sebastian Rahtz, and its membership included:
Alejandro Bia; David G. Durand; Laurent Romary; Norman Walsh (Sun Microsystems); and Christian
Wittern.

Workgroup on Stand-Off Markup, XLink and XPointer Active between February 2002 and January 2006,
this group reviewed and expanded the material now largely forming part of 16. Linking, Segmentation, and
Alignment. It was chaired by David G. Durand, and its membership included: Jean Carletta (Edinburgh
University); Chris Caton (University of Oxford); Jessica P. Hekman (Ingenta plc); Nancy M. Ide (Vassar
College); and Fabio Vitali (University of Bologna).

Manuscript Description Task Force Active between February 2003 and December 2005, this group reviewed
and finalised the material now forming 10. Manuscript Description. It was chaired by Matthew Driscoll
and comprised David Birnbaum and Merrillee Proffitt, in addition to the TEI Editors.

Names and Places Activity Active between January 2006 and May 2007, this group formulated the new
material now forming part of 13. Names, Dates, People, and Places. It was chaired by Matthew Driscoll.
and its membership included Gabriel Bodard (King's College London); Arianna Ciula; James Cummings;
Tom Elliott (University of North Carolina at Chapel Hill); @yvind Eide (University of Oslo); Leif Isaksen
(Oxford Archaeology plc); Richard Light (private consultant); Tadeusz Piotrowski (Opole University);
Sebastian Rahtz; and Tatiana Timcenko (Vilnius University).

Joint TEI/ISO Activity on Feature Structures Active between January 2003 and August 2007, this group
reviewed the material now presented in 18. Feature Structures and revised it for inclusion in ISO Standard
24610. It was chaired by Kiyong Lee (Korea University), and its active membership included the
following: Harry Bunt (Tilburg); Lionel Clément (INRIA); Eric de la Clergerie (INRIA); Thierry Declerck
(Saarbriicken); Patrick Drouin (University of Montréal); Lee Gillam (Surrey University); and Koiti Hasida
(ICOT).

The TEI Editors, Lou Burnard (University of Oxford) and Syd Bauman (Brown University) serve ex officio
on the Council and, as far as possible, on all Council workgroups.

The council also oversees an Internationalization and Localization project, led by Sebastian Rahtz and with
funding from the ALLC. This activity, ongoing since October 2005, is engaged in translating key parts of the
P5 source into a variety of languages.

Production of the translations currently included in P5 has been co-ordinated by the following:

Chinese Marcus Bingenheimer (Chung-hwa Institute of Buddhist Studies, Taipei) and Weining Hwang
(Wiirzburg University)

French Pierre-Yves Duchemin (ENSSIB); Jean-Luc Benoit (ATILF); Anila Angjeli (BnF); Joélle Bellec Martini
(BnF); Marie-France Claerebout (Aldine); Magali Le Coént (BIUSJ); Florence Clavaud (EnC); Cécile
Pierre (BIUS]).

German Werner Wegstein (Wiirzburg University)
Japanese Ohya Kazushi (Tsurumi University)
Spanish Carmen Arronis Llopis (University of Alicante) and Alejandro Bia (Miguel Hernandez University)

Italian Marco Venuti (University of Venice) and Letizia Cirillo (University of Bologna)

xi

iii. Preface and Acknowledgments

xii

About These Guidelines

These Guidelines have been developed and are maintained by the Text Encoding Initiative Consortium (TEI);
see iv.2 Historical Background. They are addressed to anyone who works with any kind of textual resource in
digital form.

They make recommendations about suitable ways of representing those features of textual resources which
need to be identified explicitly in order to facilitate processing by computer programs. In particular, they specify
a set of markers (or tags) which may be inserted in the electronic representation of the text, in order to mark the
text structure and other features of interest. Many, or most, computer programs depend on the presence of such
explicit markers for their functionality, since without them a digitized text appears to be nothing but a sequence
of undifferentiated bits. The success of the World Wide Web, for example, is partly a consequence of its use of
such markup to indicate such features as headings and lists on individual pages, and to indicate links between
pages. The process of inserting such explicit markers for implicit textual features is often called ‘markup, or
equivalently within this work ‘encoding’; the term ‘tagging’ is also used informally. We use the term encoding
scheme or markup language to denote the complete set of rules associated with the use of markup in a given
context; we use the term markup vocabulary for the specific set of markers or named distinctions employed by
a given encoding scheme. Thus, this work both describes the TEI encoding scheme, and documents the TEI
markup vocabulary.

The TEI encoding scheme is of particular usefulness in facilitating the loss-free interchange of data amongst
individuals and research groups using different programs, computer systems, or application software. Since
they contain an inventory of the features most often deployed for computer-based text processing, the
Guidelines are also useful as a starting point for those designing new systems and creating new materials,
even where interchange of information is not a primary objective.

These Guidelines apply to texts in any natural language, of any date, in any literary genre or text type,
without restriction on form or content. They treat both continuous materials (‘running text’) and discontinuous
materials such as dictionaries and linguistic corpora. Though principally directed to the needs of the scholarly
research community, the Guidelines are not restricted to esoteric academic applications. They are also useful
for librarians maintaining and documenting electronic materials, and for publishers and others creating or
distributing electronic texts. Although they focus on problems of representing in electronic form texts which
already exist in traditional media, these Guidelines are also applicable to textual material which is ‘born digital’
We believe them to be adequate to the widest variety of currently existing practices in using digital textual data,
but by no means limited to them.

The rules and recommendations made in these Guidelines are expressed in terms of what is currently the
most widely-used markup language for digital resources of all kinds: the Extensible Markup Language (XML),
as defined by the World Wide Web Consortium's XML Recommendation. However, the TEI encoding scheme
itself does not depend on this language; it was originally formulated in terms of SGML (the ISO Standard

xiii

iv. About These Guidelines

iv.1

Generalized Markup Language), a predecessor of XML, and may in future years be re-expressed in other ways
as the field of markup develops and matures. For more information on markup languages see chapter v A
Gentle Introduction to XML; for more information on the associated character encoding issues see chapter vi
Languages and Character Sets.

This document provides the authoritative and complete statement of the requirements and usage of the TEI
encoding scheme. As such, although it includes numerous small examples, it must be stressed that this work
is intended to be a reference manual rather than a tutorial guide.

The remainder of this chapter comprises three sections. The first gives an overview of the structure and
notational conventions used throughout these Guidelines. The second enumerates the design principles
underlying the TEI scheme and the application environments in which it may be found useful. Finally, the
third section gives a brief account of the origins and development of the Text Encoding Initiative itself.

Structure and Notational Conventions of this Document

The remaining two sections of the front matter to the Guidelines provide background tutorial material for those
unfamiliar with basic markup technologies. Following the present introductory section, we present a detailed
introduction to XML itself, intended to cover in a relatively painless manner as much as the novice user of
the TEI scheme needs to know about markup languages in general and XML in particular. This is followed by
a discussion of the general principles underlying current practice in the representation of different languages
and writing systems in digital form. This chapter is largely intended for the user unfamiliar with the Unicode
encoding systems, though the expert may also find its historical overview of interest.

The body of this edition of the Guidelines proper contains 23 chapters arranged in increasing order of
specialist interest. The first five chapters discuss in depth matters likely to be of importance to anyone intending
to apply the TEI scheme to virtually any kind of text. The next seven focus on particular kinds of text: verse,
drama, spoken text, dictionaries, and manuscript materials. The next nine chapters deal with a wide range
of topics, one or more of which are likely to be of interest in specialist applications of various kinds. The
last two chapters deal with the XML encoding used to represent the TEI scheme itself, and provide technical
information about its implementation. The last chapter also defines the notion of TEI conformance and its
implications for interchange of materials produced according to these Guidelines.

As noted above, this is a reference work, and is not intended to be read through from beginning to end.
However, the reader wishing to understand the full potential of the TEI scheme will need a thorough grasp of
the material covered by the first four chapters and the last two. Beyond that, the reader is recommended to
select according to their specific interests: one of the strengths of the TEI architecture is its modular nature.

As far as possible, extensive cross referencing is provided wherever related topics are dealt with; these are
particularly effective in the online version of the Guidelines. In addition, a series of technical appendixes
provide detailed formal definitions for every element, every class, and every macro discussed in the body of the
work; these are also cross linked as appropriate. Finally, a detailed bibliography is provided, which identifies the
source of many examples cited in the text as well as documenting works referred to, and listing other relevant
publications.

As an aid to the reader, most chapters of these Guidelines follow the same basic organization. The chapter
begins with an overview of the subjects treated within it, linked to the following subsections. Within each
section where new elements are described, a summary table is first given, which provides their names and
a brief description of their intended usage. This is then followed where appropriate by further discussion
of each element, including wherever possible usage examples taken somewhat eclectically from a variety of
real sources. These examples are not intended to be exhaustive, but rather to suggest typical ways in which
the elements concerned may usefully be applied. Where appropriate, a link to a statement of the source for
most examples is provided in the online version. Within the examples, use of whitespace such as newlines or
indentation is simply intended to aid legibility, and is not prescriptive or normative.

Xiv

iv.1. Structure and Notational Conventions of this Document

Wherever TEI elements or classes are mentioned in the text, they are linked in the online version to the
relevant reference specification for the element or class concerned. Element names are always given in the
form <name>, where ‘name’ is the generic identifier of the element; empty elements such as <pb> or <anchor>
include a closing slash to distinguish them wherever they are discussed. References to attributes take the form
attname, where ‘attname’ is the name of the attribute. References to classes are also presented as links, for
example model.divLike for a model class, and att.global for an attribute class.

iv.1.1 Design Principles

Because of its roots in the humanities research community, the TEI scheme is driven by its original goal
of serving the needs of research, and is therefore committed to providing a maximum of comprehensibility,
flexibility, and extensibility. More specific design goals of the TEI have been that the Guidelines should:

« provide a standard format for data interchange
« provide guidance for the encoding of texts in this format
« support the encoding of all kinds of features of all kinds of texts studied by researchers

« be application independent
This has led to a number of important design decisions, such as:
o the choice of XML and Unicode

o the provision of a large predefined tag set
« encodings for different views of text
« alternative encodings for the same textual features

o mechanisms for user-defined modification of the scheme

We discuss some of these goals in more detail below.

The goal of creating a common interchange format which is application independent requires the definition
of a specific markup syntax as well as the definition of a large set of elements or concepts. The syntax
of the recommendations made in this document conforms to the World Wide Web Consortium's XML
Recommendation (Bray et al. (eds.) (2006)) but their definition is as far as possible independent of any
particular schema language.

The goal of providing guidance for text encoding suggests that recommendations be made as to what textual
features should be recorded in various situations. However, when selecting certain features for encoding in
preference to others, these Guidelines have tended to prefer generic solutions to specific ones, and to avoid areas
where no consensus exists, while attempting to accommodate as many diverse views as feasible. Consequently,
the TEI Guidelines make (with relatively rare exceptions) no suggestions or restrictions as to the relative
importance of textual features. The philosophy of the Guidelines is ‘if you want to encode this feature, do
it this way’ — but very few features are mandatory. In the same spirit, while the Guidelines very rarely require
you to encode any particular feature, they do require you to be honest about which features you have encoded,
that is, to respect the meanings and usage rules they recommend for specific elements and attributes proposed.

The requirement to support all kinds of materials likely to be of interest in research has largely conditioned the
development of the TEI into a very flexible and modular system. The development of other XML vocabularies
or standards is typically motivated by the desire to create a single fully specified encoding scheme for use
in a well-defined application domain. By contrast, the TEI is intended for use in a large number of rather
ill-defined and often overlapping domains. It achieves its generality by means of the modular architecture
described in |1. The TEI Infrastructure which enables each user to create a schema appropriate to their needs
without compromising the interoperability of their data.

The Guidelines have been written largely with a focus on text capture (i.e. the representation in electronic
form of an already existing copy text in another medium) rather than text creation (where no such copy text

iv. About These Guidelines

exists). Hence the frequent use of terms like ‘transcription;, ‘original; ‘copy text, etc. However, the Guidelines
are equally applicable to text creation.

Concerning text capture the TEI Guidelines do not specify a particular approach to the problem of fidelity
to the source text and recoverability of the original; such a choice is the responsibility of the text encoder.
The current version of these Guidelines, however, provides a more fully elaborated set of tags for markup of
rhetorical, linguistic, and simple typographic characteristics of the text than for detailed markup of page layout
or for fine distinctions among type fonts or manuscript hands. It should be noted also that, with the present
version of the Guidelines, it is no longer necessarily the case that an unmediated version of the source text can
be recovered from an encoded text simply by removing the markup.

In these Guidelines, no hard and fast distinction is drawn between ‘objective’ and ‘subjective’ information
or between ‘Tepresentation’ and ‘interpretation. These distinctions, though widely made and often useful in
narrow, well-defined contexts, are perhaps best interpreted as distinctions between issues on which there is a
scholarly consensus and issues where no such consensus exists. Such consensus has been, and no doubt will
be, subject to change. The TEI Guidelines do not make suggestions or restrictions as to which of these features
should be encoded. The use of the terms descriptive and interpretive about different types of encoding in the
Guidelines is not intended to support any particular view on these theoretical issues. Historically, it reflects a
purely practical division of responsibility amongst the original working committees (see further iv.2 Historical
Background).

In general, the accuracy and the reliability of the encoding and the appropriateness of the interpretation is
for the individual user of the text to determine. The Guidelines provide a means of documenting the encoding
in such a way that a user of the text can know the reasoning behind that encoding, and the general interpretive
decisions on which it is based. The TEI header may be used to document and justify many such aspects of the
encoding, but the choice of TEI elements for a particular feature is in itself a statement about the interpretation
reached by the encoder.

In many situations more than one view of a text is needed since no absolute recommendation to embody one
specific view of text can apply to all texts and all approaches to them. Within limits, the syntax of XML ensures
that some encodings can be ignored for some purposes. To enable encoding multiple views, these Guidelines
not only treat a variety of textual features, but sometimes provide several alternative encodings for what appear
to be identical textual phenomena. These Guidelines offer the possibility of encoding many different views
of the text, simultaneously if necessary. Where different views of the formal structure of a text are required,
as opposed to different annotations on a single structural view, however, the formal syntax of XML (which
requires a single hierarchical view of text structure) poses some problems; recommendations concerning ways
of overcoming or circumventing that restriction are discussed in chapter 20. Non-hierarchical Structures.

In brief, the TEI Guidelines define a general-purpose encoding scheme which makes it possible to encode
different views of text, possibly intended for different applications, serving the majority of scholarly purposes
of text studies in the humanities. Because no predefined encoding scheme can possibly serve all research
purposes, the TEI scheme is designed to facilitate both selection from a wide range of predefined markup
choices, and the addition of new (non-TEI) markup options. By providing a formally verifiable means of
extending the TEI recommendations, the TEI makes it simple for such user-identified modifications to be
incorporated into future releases of the Guidelines as they evolve. The underlying mechanisms which support
these aspects of the scheme are introduced in chapter|1. The TEI Infrastructure, and detailed discussions of their
use provided in chapter 23. Using the TEI

iv.1.2 Intended Use

We envisage three primary functions for these Guidelines:
« guidance for individual or local practice in text creation and data capture;

« support of data interchange;

iv.1. Structure and Notational Conventions of this Document

« support of application-independent local processing.
These three functions are so thoroughly interwoven in practice that it is hardly possible to address any one

without addressing the others. However, the distinction provides a useful framework for discussing the possible
role of the Guidelines in work with electronic texts.

Use in Text Capture and Text Creation

The description of textual features found in the chapters which follow should provide a useful checklist from
which scholars planning to create electronic texts should select the subset of features suitable for their project.

Problems specific to text creation or text ‘capture’ have not been considered explicitly in this document.
These Guidelines are not concerned with the process by which a digital text comes into being: it can be typed
by hand, scanned from a printed book or typescript, read from a typesetter's tape, or acquired from another
researcher who may have used another markup scheme (or no explicit markup at all).

We include here only some general points which are often raised about markup and the process of data
capture.

XML can appear distressingly verbose, particularly when (as in these Guidelines) the names of tags and
attributes are chosen for clarity and not for brevity. Editor macros and keyboard shortcuts can allow a typist
to enter frequently used tags with single keystrokes. It is often possible to transform word-processed or
scanned text automatically. Markup-aware software can help with maintaining the hierarchical structure of
the document, and display the document with visual formatting rather than raw tags.

The techniques described in chapter 23.2. Personalization and Customization may be used to develop simpler
data capture TEI-conformant schemas, for example with limited numbers of elements, or with shorter names
for the tags being used most often. Documents created with such schemas may then be automatically converted
to a more elaborated TEI form.

Use for Interchange

The TEI format may simply be used as an interchange format, permitting projects to share resources even when
their local encoding schemes differ. If there are n different encoding formats, to provide mappings between each
possible pair of formats requires nx(n-1) translations; with an interchange format, only 2xn such mappings are
needed. However, for such translations to be carried out without loss of information, the interchange format
chosen must be as expressive (in a formal sense) as any of the target formats; this is a further reason for the
TEI's provision of both highly abstract or generic encodings and highly specific ones.

To translate between any pair of encoding schemes implies:

1. identifying the sets of textual features distinguished by the two schemes;
2. determining where the two sets of features correspond;

3. creating a suitable set of mappings.

For example, to translate from encoding scheme X into the TEI scheme:

1. Make a list of all the textual features distinguished in X.

2. Identify the corresponding feature in the TEI scheme. There are three possibilities for each feature:

(a) the feature exists in both X and the TEI scheme;
(b) X has a feature which is absent from the TEI scheme;

(c) X has a feature which corresponds with more than one feature in the TEI scheme.

xvii

iv. About These Guidelines

iv.2

The first case is a trivial renaming. The second will require an extension to the TEI scheme, as described
in chapter 23.2. Personalization and Customization. The third is more problematic, but not impossible,
provided that a consistent choice can be made (and documented) amongst the alternatives.

The ease with which this translation can be defined will of course depend on the clarity with which scheme
X represents the features it encodes.

Translating from the TEI into scheme X follows the same pattern, except that if a TEI feature has no
equivalent in X, and X cannot be extended, information must be lost in translation.

The rules defining conformance to the Guidelines are given in some detail in chapter 23.3. Conformance. The
basic principles informing those rules may be summarized as follows:

1. The TEI abstract model (that is, the set of categorical distinctions which it defines) must be respected. The
correspondence between a tag X and the semantic function assigned to it by these Guidelines may not be
changed; such changes are known as tag abuse and strongly deprecated.

2. ATEI document must be expressed as a valid XML-conformant document which uses the TEI namespace
appropriately. If, for example, the document encodes features not provided by the Guidelines, such
extensions may not be associated with the TEI namespace.

3. It must be possible to validate a TEI document against a schema derived from these Guidelines, possibly
with extensions provided in the recommended manner.

Use for Local Processing
Machine-readable text can be manipulated in many ways; some users:

o edit texts (e.g. word processors, syntax-directed editors)

« edit, display, and link texts in hypertext systems

o format and print texts using desktop publishing systems, or batch-oriented formatting programs
« load texts into free-text retrieval databases or conventional databases

+ unload texts from databases as search results or for export to other software
o search texts for words or phrases

« perform content analysis on texts

« collate texts for critical editions

« scan texts for automatic indexing or similar purposes

o parse texts linguistically

« analyze texts stylistically

« scan verse texts metrically

o link text and images

These applications cover a wide range of likely uses but are by no means exhaustive. The aim has been to
make the TEI Guidelines useful for encoding the same texts for different purposes. We have avoided anything
which would restrict the use of the text for other applications. We have also tried not to omit anything essential
to any single application.

Because the TEI format is expressed using XML, almost any modern text processing system is able to process
it, and new TEI-aware software systems are able to build on a solid base of existing software libraries.

Historical Background

The Text Encoding Initiative grew out of a planning conference sponsored by the Association for Computers
and the Humanities (ACH) and funded by the U.S. National Endowment for the Humanities (NEH), which

xviii

iv.2. Historical Background

was held at Vassar College in November 1987. At this conference some thirty representatives of text archives,
scholarly societies, and research projects met to discuss the feasibility of a standard encoding scheme and to
make recommendations for its scope, structure, content, and drafting. During the conference, the Association
for Computational Linguistics and the Association for Literary and Linguistic Computing agreed to join ACH
as sponsors of a project to develop the Guidelines. The outcome of the conference was a set of principles (the
‘Poughkeepsie Principles, Burnard (1988)), which determined the further course of the project.

The Text Encoding Initiative project began in June 1988 with funding from the NEH, soon followed by
further funding from the Commission of the European Communities, the Andrew W. Mellon Foundation,
and the Social Science and Humanities Research Council of Canada. Four working committees, composed
of distinguished scholars and researchers from both Europe and North America, were named to deal with
problems of text documentation, text representation, text analysis and interpretation, and metalanguage and
syntax issues. Each committee was charged with the task of identifying ‘significant particularities’ in a range of
texts, and two editors appointed to harmonise the resulting recommendations.

A first draft version (P1, with the ‘P’ here and subsequently standing for ‘Proposal’) of the Guidelines was
distributed in July 1990 under the title Guidelines for the Encoding and Interchange of Machine-Readable Texts.
Extensive public comment and further work on areas not covered in this version resulted in the drafting of a
revised version, TEI P2, distribution of which began in April 1992. This version included substantial amounts
of new material, resulting from work carried out by several specialist working groups, set up in 1990 and 1991
to propose extensions and revisions to the text of P1. The overall organization, both of the draft itself and of
the scheme it describes, was entirely revised and reorganized in response to public comment on the first draft.

In June 1993 an Advisory Board met to review the current state of the TEI Guidelines, and recommended
the formal publication of the work done to that time. That version of the TEI Guidelines, TEI P3, consolidated
the work published as parts of TEI P2, along with some additional new material and was finally published in
May of 1994 without the label draft, thus marking the conclusion of the initial development work.

In February of 1998 the World Wide Web Consortium issued a final Recommendation for the Extensible
Markup Language, XML.! Following the rapid take-up of this new standard metalanguage, it became evident
that the TEI Guidelines (which had been published originally as an SGML application) needed to be re-
expressed in this new formalism if they were to survive. The TEI editors, with abundant assistance from others
who had developed and used TEI, developed an update plan, and made tentative decisions on relevant syntactic
issues.

In January of 1999, the University of Virginia and the University of Bergen formally proposed the creation
of an international membership organization, to be known as the TEI Consortium, which would maintain,
develop, and promote the TEI Shortly thereafter, two further institutions with longstanding ties to the
TEI (Brown University and Oxford University) joined them in formulating an Agreement to Establish a
Consortium for the Maintenance of the Text Encoding Initiative (An Agreement to Establish a Consortium
for the Maintenance of the Text Encoding Initiative (March 1999)), on which basis the TEI Consortium was
eventually established and incorporated as a not-for-profit legal entity at the end of the year 2000. The first
members of the new TEI Board took office during January of 2001.

The TEI Consortium was established in order to maintain a permanent home for the TEI as a democratically
constituted, academically and economically independent, self-sustaining, non-profit organization. In addition,
the TEI Consortium was intended to foster a broad-based user community with sustained involvement in the
future development and widespread use of the TEI Guidelines (Burnard (2000)).

To oversee and manage the revision process in collaboration with the TEI Editors, the TEI Board formed a
Technical Council, with a membership elected from the TEI user community. The Council met for the first
time in January 2002 at King's College London. Its first task was to oversee production of an XML version of

IXML was originally developed as a way of publishing on the World Wide Web richly encoded documents such as those for which the TEI was
designed. Several TEI participants contributed heavily to the development of XML, most notably XML's senior co-editor C. M. Sperberg-McQueen,
who served as the North American editor for the TEI Guidelines from their inception until 1999.

Xix

iv. About These Guidelines

iv.3

the TEI Guidelines, updating P3 to enable users to work with the emerging XML toolset. This, the P4 version
of the Guidelines, was published in June 2002. It was essentially an XML version of P3, making no substantive
changes to the constraints expressed in the schemas apart from those necessitated by the shift to XML, and
changing only corrigible errors identified in the prose of the P3 Guidelines. However, given that P3 had by this
time been in steady use since 1994, it was clear that a substantial revision of its content was necessary, and work
began immediately on the P5 version of the Guidelines. This was planned as a thorough overhaul, involving a
public call for features and new development in a number of important areas not previously addressed including
character encoding, graphics, manuscript description, biographical and geographical data, and the encoding
language in which the TEI Guidelines themselves are written.

The members of the TEI Council and its associated workgroups are listed in iii Preface and Acknowledgments.
In preparing this edition, they have been attentive to the requirements and practice of the widest possible
range of TEI users, who are now to be found in many different research communities across the world, and
have been largely instrumental in transforming the TEI from a grant-supported international research project
into a self-sustaining community-based effort. One effect of the incorporation of the TEI has been the legal
requirement to hold an annual meeting of the Consortium members; these meetings have emerged as an
invaluable opportunity to sustain and reinforce that sense of community.

The present work is therefore the result of a sustained period of consultation, drafting, and revision, with
input from many different experts. Whatever merits it may have are to be attributed to them; the Editors
accept responsibility only for the errors remaining.

Future Developments

The encoding recommended by this document may be used without fear that future versions of the TEI scheme
will be inconsistent with it in fundamental ways. The TEI will be sensitive, in revising these Guidelines, to the
possible problems which revision might pose for those who are already using this version of the Guidelines.

With TEI P5, a version numbering system is introduced: the version number has two parts, a major number
and a minor, for example 1.0. The TEI undertakes that no change will be made to the formal expression of
these Guidelines (that is, a TEI schema, as defined in 23.3. Conformance) such that documents conformant to
a given major numbered release cease to be compatible with a subsequent release of the same major number.
Moreover, as far as possible, new minor releases will be made only for the purpose of adding new compatible
features, or of correcting errors in existing features.

The Guidelines are currently maintained as an open source (GNU General Public License) project, on
the Sourceforge site http://tei.sf.net/ from which released and development versions may be freely
downloaded; notice of errors detected and enhancements requested may also be submitted at this site.

http://tei.sf.net/

\'%

A Gentle Introduction to XML

The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup
Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent,
system-independent methods of storing and processing texts in electronic form. It is now also the interchange
and communication format used by many applications on the World Wide Web. In the present chapter we
informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the
first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in
this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements
of these Guidelines.

Strictly speaking, XML is a metalanguage, that is, a language used to describe other languages, in this case,
markup languages. Historically, the word markup has been used to describe annotation or other marks within a
text intended to instruct a compositor or typist how a particular passage should be printed or laid out. Examples
include wavy underlining to indicate boldface, special symbols for passages to be omitted or printed in a
particular font, and so forth. As the formatting and printing of texts was automated, the term was extended to
cover all sorts of special codes inserted into electronic texts to govern formatting, printing, or other processing.

Generalizing from that sense, we define markup, or (synonymously) encoding, as any means of making
explicit an interpretation of a text. Of course, all printed texts are implicitly encoded (or marked up) in this
sense: punctuation marks, capitalization, disposition of letters around the page, even the spaces between words
all might be regarded as a kind of markup, the purpose of which is to help the human reader determine where
one word ends and another begins, or how to identify gross structural features such as headings or simple
syntactic units such as dependent clauses or sentences. Encoding a text for computer processing is, in principle,
like transcribing a manuscript from scriptio continua®; it is a process of making explicit what is conjectural or
implicit, a process of directing the user as to how the content of the text should be (or has been) interpreted.

By markup language we mean a set of markup conventions used together for encoding texts. A markup
language must specify how markup is to be distinguished from text, what markup is allowed, what markup is
required, and what the markup means. XML provides the means for doing the first three; documentation such
as these Guidelines is required for the last.

The present chapter attempts to give an informal introduction to those parts of XML of which a proper
understanding is necessary to make best use of these Guidelines. The interested reader should also consult one
or more of the many excellent introductory textbooks and web sites now available on the subject.?

!In the ‘continuous writing’ characteristic of manuscripts from the early classical period, words are written continuously with no intervening spaces
or punctuation.

2New textbooks about XML appear at regular intervals and to select any one of them would be invidious. A useful list of pointers to introductory
web sites is available from http://www.xml.org/xml/resources focus beginnerguide.shtml; recommended online courses include http://www.
w3schools.com/xml/default.asp and http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html,

Xxi

http://www.xml.org/xml/resources_focus_beginnerguide.shtml
http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xml/default.asp
http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html

v. A Gentle Introduction to XML

v.1

What's special about XML?

Three characteristics of XML distinguish it from other markup languages:
1. its emphasis on descriptive rather than procedural markup;
2. its notion of documents as instances of a document type;
3. its independence of any one hardware or software system.

These three aspects are discussed briefly below, and then in more depth in the remainder of this chapter.

XML is frequently compared with HTML, the language in which web pages have generally been written,
which shares some of the above characteristics. Compared with HTML, however, XML has some other
important features:

+ XML is extensible: it does not consist of a fixed set of tags;
« XML documents must be well-formed according to a defined syntax;
+ an XML document can be formally validated against a schema of some kind;

« XML is more interested in the meaning of data than in its presentation.

Descriptive markup

In a descriptive markup system, the markup codes used do little more than categorize parts of a document.
Markup codes such as <para> or \end{list} simply identify a portion of a document and assert of it that ‘the
following item is a paragraph; or ‘this is the end of the most recently begun list, etc. By contrast, a procedural
markup system defines what processing is to be carried out at particular points in a document: ‘call procedure
PARA with parameters 42, b, and x here’ or ‘move the left margin 2 quads left, move the right margin 2 quads
right, skip down one line, and go to the new left margin, etc. In XML, the instructions needed to process a
document for some particular purpose (for example, to format it) are sharply distinguished from the markup
used to describe it.

Usually, the markup or other information needed to process a document will be maintained separately from
the document itself, typically in a distinct document called a stylesheet, though it may do much more than
simply define the rendition or visual appearance of a document.?

When descriptive markup is used, the same document can readily be processed in many different ways, using
only those parts of it which are considered relevant. For example, a content analysis program might disregard
entirely the footnotes embedded in an annotated text, while a formatting program might extract and collect
them all together for printing at the end of each chapter. Different kinds of processing can be carried out with
the same part of a file. For example, one program might extract names of persons and places from a document
to create an index or database, while another, operating on the same text, but using a different stylesheet, might
print names of persons and places in a distinctive typeface.

v.1.2 Types of document

A second key aspect of XML is its notion of a document type: documents are regarded as having types, just as
other objects processed by computers do. The type of a document is formally defined by its constituent parts
and their structure. The definition of a ‘report, for example, might be that it consisted of a ‘title’ and possibly an
‘author’, followed by an ‘abstract’ and a sequence of one or more ‘paragraphs. Anything lacking a title, according
to this formal definition, would not formally be a report, and neither would a sequence of paragraphs followed
by an abstract, whatever other report-like characteristics these might have for the human reader.

3We do not here discuss in any detail the ways that a stylesheet can be used or defined, nor do we discuss the popular W3C Stylesheet Languages
XSLT and CSS. See further Berglund (ed.) (2006), Clark (ed.) (1999), and Lie and Bos (eds.) (1999).

xXxii

v.2. Textual structures

If documents are of known types, a special-purpose program (called a parser), once provided with an
unambiguous definition of a document type, can check that any document claiming to be of that type does
in fact conform to the specification. A parser can check that all elements specified for a particular document
type are present and no others, that they are combined in appropriate ways, correctly ordered, and so forth.
More significantly, different documents of the same type can be processed in a uniform way. Programs can be
written which take advantage of the knowledge encapsulated in the document type information, and which
can thus behave in a more ‘intelligent’ fashion.

v.1.3 Data independence

v.2

A basic design goal of XML is to ensure that documents encoded according to its provisions can move from
one hardware and software environment to another without loss of information. The two features discussed so
far both address this requirement at an abstract level; the third feature addresses it at the level of the strings of
data characters that make up a document. All XML documents, whatever languages or writing systems they
employ, use the same underlying character encoding (that is, the same method of representing as binary data
those graphic forms making up a particular writing system).# This encoding is defined by an international
standard,® which is implemented by a universal character set maintained by an industry group called the
Unicode Consortium, and known as Unicode.® Unicode provides a standardised way of representing any of
the many thousands of discrete symbols making up the world's writing systems, past and present.

Most modern computing systems now support Unicode directly; for those which do not, XML provides a
mechanism for the indirect representation of single characters by means of their character number, known as
character references; see further v.6.1 Character References.

Textual structures

A text is not an undifferentiated sequence of words, much less of bytes. For different purposes, it may be
divided into many different units, of different types or sizes. A prose text such as this one might be divided into
sections, chapters, paragraphs, and sentences. A verse text might be divided into cantos, stanzas, and lines.
Once printed, sequences of prose and verse might be divided into volumes, gatherings, and pages.

Structural units of this kind are most often used to identify specific locations or refer to points within a text
(‘the third sentence of the second paragraph in chapter ten’; ‘canto 10, line 1234’; ‘page 412] etc.) but they
may also be used to subdivide a text into meaningful fragments for analytic purposes (‘is the average sentence
length of section 2 different from that of section 5?°how many paragraphs separate each occurrence of the
word nature? how many pages?’). Other structural units are more clearly analytic, in that they characterize a
section of a text. A dramatic text might regard each speech by a different character as a unit of one kind, and
stage directions or pieces of action as units of another kind. Such an analysis is less useful for locating parts
of the text (‘the 93rd speech by Horatio in Act 2°) than for facilitating comparisons between the words used by
one character and those of another, or those used by the same character at different points of the play.

In a prose text one might similarly wish to regard as units of different types passages in direct or indirect
speech, passages employing different stylistic registers (narrative, polemic, commentary, argument, etc.),
passages of different authorship and so forth. And for certain types of analysis (most notably textual criticism)
the physical appearance of one particular printed or manuscript source may be of importance: paradoxically,
one may wish to use descriptive markup to describe presentational features such as typeface, line breaks, use
of whitespace and so forth.

These textual structures overlap with one other in complex and unpredictable ways. Particularly when
dealing with texts as instantiated by paper technology, the reader needs to be aware of both the physical
organization of the book and the logical structure of the work it contains. Many great works (Sterne's Tristram

4See Extensible Markup Language (XML) 1.0, available from http://www.w3.0rg/TR/REC- xml, Section 2.2 Characters.
SISO/IEC 10646-1993 Information Technology — Universal Multiple-Octet Coded Character Set (UCS)
6Seelhttp://www.unicode.org/

xxiii

http://www.w3.org/TR/REC-xml
http://www.unicode.org/

v. A Gentle Introduction to XML

Shandy for example) cannot be fully appreciated without an awareness of the interplay between narrative units
(such as chapters or paragraphs) and presentational ones (such as page divisions). For many types of research,
the interplay among different levels of analysis is crucial: the extent to which syntactic structure and narrative
structure mesh, or fail to mesh, for example, or the extent to which phonological structures reflect morphology.

v.3 XML structures

This section describes the simple and consistent mechanism for the markup or identification of textual structure
provided by XML. It also describes the methods XML provides for the expression of rules defining how units
of textual structure can meaningfully be combined in a text.

v.3.1 Elements

The technical term used in XML for a textual unit, viewed as a structural component, is element. Different types
of elements are given different names, but XML provides no way of expressing the meaning of a particular type
of element, other than its relationship to other element types. That is, all one can say about an element called
(say) <blort> is that instances of it may (or may not) occur within elements of type <farble>, and that it may
(or may not) be decomposed into elements of type <blortette>. It should be stressed that XML is entirely
unconcerned with the semantics of textual elements, because these are considered to be application dependent.
It is up to the creators of XML vocabularies (such as these Guidelines) to choose intelligible element names and
to define their intended use in text markup. That is the chief purpose of documents such as the TEI Guidelines.
From the need to choose element names indicative of function comes the technical term for the name of an
element type, which is generic identifier, or GI.

Within a marked-up text (a document instance), each element must be explicitly marked or tagged in some
way. This is done by inserting a tag at the beginning of the element (a start-tag) and another at its end (an
end-tag). The start- and end-tag pair are used to bracket off element occurrences within the running text, in
rather the same way as different types of parentheses or quotation marks are used in conventional punctuation.
For example, a quotation element in a text might be tagged as follows:

. Rosalind's
remarks <quote>This is the silliest stuff that ere I heard
of!</quote> clearly indicate ...

As this example shows, a start-tag takes the form <quote>, where the opening angle bracket indicates the
start of the start-tag, ‘quote’ is the generic identifier of the element that is being delimited, and the closing angle
bracket indicates the end of the start-tag. An end-tag takes an identical form, except that the opening angle
bracket is followed by a solidus (slash) character, so that the corresponding end-tag is </quote>.” The material
between the start-tag and the end-tag (the string of words “This is the silliest stuff that ere I heard of” in the
example above) is known as the content of the element. Sometimes there may be nothing between the start and
the end-tag; in this case the two may optionally be merged together into a single composite tag with the solidus
at the end, like this: <quote/>.

v.3.2 Content models: an example

An element may be empty, that is, it may have no content at all, or it may contain just a sequence of characters
with no other elements. Often, however, elements of one type will be embedded (contained entirely) within
elements of a different type.

To illustrate this, we will consider a very simple structural model. Let us assume that we wish to identify
within an anthology only poems, their headings, and the stanzas and lines of which they are composed. In

7Because the opening angle bracket has this special function in an XML document, special steps must be taken to use that character for other
purposes (for example, as the mathematical less-than operator); see further section v.6.1 Character References.

XXiv

v.3. XML structures

XML terms, our document type is the anthology, and it consists of a series of poems. Each poem has embedded
within it one element, a heading, and several occurrences of another, a stanza, each stanza having embedded
within it a number of line elements. Fully marked up, a text conforming to this model might appear as follows:®

<anthology>

<poem>

<heading>The SICK ROSE</heading>
<stanza>

<line>0 Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>

<stanza>

<line>Has found out thy bed</line>
<line>0f crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>
</stanza>

</poem>

<!-- more poems go here -->
</anthology>

It should be stressed that this example does not use the names proposed for corresponding elements
elsewhere in these Guidelines: the above is thus not a valid TEI document.? It will, however, serve as an
introduction to the basic notions of XML. Whitespace and line breaks have been added to the example for the
sake of visual clarity only; they have no particular significance in the XML encoding itself. Also, the line

<!-- more poems go here -->

is an XML comment and is not treated as part of the text.
As it stands, the above example is what is known as a well-formed XML document because it obeys the
following simple rules:

1. there is a single element enclosing the whole document: this is known as the root element (<anthology>
in our case);

2. each element is completely contained by the root element, or by an element that is so contained; elements
do not partially overlap one another;

3. atag explicitly marks the start and end of each element.

A well-formed XML document can be processed in a number of useful ways. A simple indexing program
could extract only the relevant text elements in order to make a list of headings, first lines, or words used in the
poem text; a simple formatting program could insert blank lines between stanzas, perhaps indenting the first
line of each, or inserting a stanza number. Different parts of each poem could be typeset in different ways. A
more ambitious analytic program could relate the use of punctuation marks to stanzaic and metrical divisions.!°

8The example is taken from William Blake's Songs of innocence and experience (1794).
The element names here have been chosen for clarity of exposition; there is, however, a TEI element corresponding to each, so that this example
may be regarded as TEI conformable in the sense that this term is defined in 23.3. Conformance.
10Note that this simple example has not addressed the problem of marking elements such as sentences explicitly; the implications of this are discussed
in section v.4 Complicating the issue.

XXV

v. A Gentle Introduction to XML

Scholars wishing to see the implications of changing the stanza or line divisions chosen by the editor of this
poem can do so simply by altering the position of the tags. And of course, the text as presented above can be
transported from one computer to another and processed by any program (or person) capable of making sense
of the tags embedded within it with no need for the sort of transformations and translations needed for files
which have been saved in one or other of the proprietary formats preferred by most word-processing programs.

As we noted above, one of the attractions of XML is that it enables us to make up our own names for the
elements rather than requiring us always to use names predefined by other agencies. Clearly, however, if we
wish to exchange our poems with others, or to include poems others have marked up in our anthology, we will
need to know a bit more about the names used for the tags. The means that XML provides for this is called a
namespace. In our simple example, the tags just contain a simple name. As we shall see, it is also possible to
use tags that include a qualified name, that is, a name with an optional prefix identifying the set of names to
which it belongs. For example, we have defined an element <line> for the purpose of marking lines of verse.
Another person might, however, define an element called <line> for the purpose of marking typographic lines,
or drawn lines. Because of these different meanings, if we wish to share data it will be necessary to distinguish
the two ‘line’ components in our marked-up texts. This is achieved by including a namespace prefix within the
markup, for example like this:

<my:line>This is one of my lines</my:line>
Q== 500 ==B

<yr:line>This is one of your lines</yr:line>

This feature is particularly important if we have different definitions of what a ‘line’ is, of course, but there
are many occasions when it is useful to distinguish groups of tags belonging to different ‘markup vocabularies’;
we discuss this further below (v.6.3 Namespaces). One particularly useful namespace prefix is predefined for
XML: it is xml and we will see examples of its use below.

Namespaces allow us to represent the fact that a name belongs to a group of names, but don't allow us to
do much more by way of checking the integrity or accuracy of our tagging. Simple well-formedness alone
is not enough for the full range of what might be useful in marking up a document. It might well be useful
if, in the process of preparing our digital anthology, a computer system could check some basic rules about
how stanzas, lines, and headings can sensibly co-occur in a document. It would be even more useful if the
system could check that stanzas are always tagged <stanza> and not occasionally <canto> or <Stanza>. An
XML document in which such rules have been checked is technically known as a valid document, and the
ability to perform such validation is one of the key advantages of using XML. To carry this out, some way of
formally stating the criteria for successful validation is necessary: in XML this formal statement is provided by
an additional document known as a schema.!!

v.3.3 Validating a document's structure

The design of a schema may be as lax or as restrictive as the occasion warrants. A balance must be struck
between the convenience of following simple rules and the complexity of handling real texts. This is particularly
the case when the rules being defined relate to texts that already exist: the designer may have only the haziest of
notions as to an ancient text's original purpose or meaning and hence find it very difficult to specify consistent
rules about its structure. On the other hand, where a new text is being prepared to an exact specification, for
entry into a textual database of some kind for example, the more precisely stated the rules, the better they
can be enforced. Even in the case where an existing text is being marked up, it may be beneficial to define
a restrictive set of rules relating to one particular view or hypothesis about the text — if only as a means of

WThe older terms Document Type Declaration and Document Type Definition, both abbreviated as DTD, may also be encountered. Throughout these
Guidelines we use the term schema for any kind of formal document grammar.

Xxvi

v.3. XML structures

testing the usefulness of that view or hypothesis. A schema designed for use by a small project or team is
likely to take a different position on such issues than one intended for use by a large and possibly fragmented
community. It is important to remember that every schema results from an interpretation of a text. There is
no single schema encompassing the absolute truth about any text, although it may be convenient to privilege
some schemas above others for particular types of analysis.

XML is widely used in environments where uniformity of document structure is a major desideratum. In the
production of technical documentation, for example, it is of major importance that sections and subsections
should be properly nested, that cross-references should be properly resolved and so forth. In such situations,
documents are seen as raw material to match against predefined sets of rules. As discussed above, however, the
use of simple rules can also greatly simplify the task of tagging accurately elements of less rigidly constrained
texts. By making these rules explicit, the scholar reduces his or her own burdens in marking up and verifying
the electronic text, while also being forced to make explicit an interpretation of the structure and significant
particularities of the text being encoded.

v.3.4 Anexample schema

A schema can be expressed in a number of different ways; frequently-encountered methods include the
Document Type Definition (DTD) language which XML inherited from SGML; the XML Schema language
(http://www.w3.0rg/XML/Schema) defined by the W3C; and the RELAX NG language (http://relaxng.
org/) originally developed within the OASIS Technical Committee and now an ISO standard!®. In this
chapter, and throughout these Guidelines, we give examples using the ‘compact syntax’ of RELAX NG, but the
specifications within these Guidelines are expressed in a way that is largely independent of the specific language
in which a schema generated from them is expressed.!* Although we will use the RELAX NG compact syntax
for illustration in what follows, the reader should bear in mind that analogous concepts are expressed differently
in other schema languages.
The following schema might be used to validate our example poem:

anthology p = element anthology { poem p+ }
poem p = element poem { heading p?, stanza p+ }
stanza p = element stanza {line p+}

heading p = element heading { text }

line p = element line { text }

start = anthology p

Note that this is not the only way in which a RELAX NG schema might be written;'* we have adopted this
idiom, however, because it matches that used throughout the rest of the Guidelines.

A RELAX NG schema expresses rules about the possible structure of a document in terms of patterns; that
is, it defines a number of named patterns, each of which acts as a kind of template against which an input
document can be matched. The meaning of a pattern is expressed in a schema by reference to other patterns,
or to a small number of built-in fundamental concepts, as we shall see. In the example above, the word to the
left of the equals sign is the pattern's name, and the material following it declares a meaning for the pattern.
Patterns may also be of particular types; the ones that interest us here are called element patterns and attribute
patterns. In this example we see definitions for five element patterns. Note that we have used similar names
for the pattern and the element which the pattern describes: so, for example, the line anthology p = element
anthology {poem p+} defines an element pattern called anthology_p, the value of which defines an element

121SO/IEC FDIS 19757-2 Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG

138ee further 22. Documentation Elements and|23.4. Implementation of an ODD System! In practice, the only part of a TEI element specification not
expressed using TEI-defined syntax is the content model for an element, which is expressed using the RELAX NG schema language for reasons of
processing convenience. RELAX NG uses its own XML vocabulary to define content models, which is adopted by the TEI for the same purpose.

For a good tutorial introduction to RELAX NG, seevan der Vlist (2004),

XXVvii

http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/

v. A Gentle Introduction to XML

called anthology. These naming conventions are arbitrary; we could use the same name for the pattern as for
the element, since the two are syntactically quite distinct. The name, or generic identifier, of the element follows
the word ‘element, and the content model for the element is given within the curly braces following that. Each
of these parts is discussed further below.

The last line of the schema above tells a RELAX NG validator which element (or elements) in a document
can be used as the root element: in our case only <anthology>. This enables the validator to detect whether a
particular document is well-formed but incomplete; it also simplifies the processing task by providing an ‘entry
point.

Generic identifier

Following the word ‘element’ each pattern declaration gives the generic identifier (often abbreviated to GI) of
the element being defined, for example poem, heading, etc. A GI may contain letters, digits, hyphens, underscore
characters, or full stops, but must begin with a letter.!> Uppercase and lowercase letters are quite distinct:
an element with the GI <foo> is not the same as an element with the GI <Foo>; the root element of a TEI-
conformant document is <TEI>, not<tei>.

Content model

The second part of each declaration, enclosed in curly braces, is called the content model of the element being
defined, because it specifies what may legitimately be contained within it. In RELAX NG, the content model
is defined in terms of other patterns, either by embedding them, or (as in our examples above) by naming or
referring to them. The RELAX NG compact syntax also uses a small number of reserved words to identify
other possible contents for an element, of which by far the most commonly encountered is text, as in this
example: it means that the element being defined may contain any valid character data, but no elements. If
an XML document is thought of as a structure like a family tree, with a single ancestor at the top (in our
case, this would be <anthology>), then almost always, following the branches of the tree downwards (for
example, from <anthology> to <poem> to <stanza> to <line> and <heading>) will lead eventually to text.
In our example, <heading> and <line> are so defined, since their content models say text only and name no
embedded elements.

Occurrence indicators

The declaration for <stanza> in the example above states that a stanza consists of one or more lines. It uses
an occurrence indicator (the plus sign) to indicate how many times something matching the pattern line_p
may be repeated. There are three occurrence indicators: the plus sign, the question mark, and the asterisk or
star. The plus sign means that the pattern can match one or more times; the question mark means that it may
match at most once but is not mandatory; the star means that the pattern concerned is not mandatory, but
may match more than once. Thus, if the content model for <stanza> were {line_p*}, stanzas with no lines
would be possible as well as those with more than one line. If it were {line_p?}, again empty stanzas would be
countenanced, but no stanza could have more than a single line. The declaration for <poem> in the example
above thus states that a <poem> cannot have more than one heading, but may have none, and that it must have
at least one <stanza> and may have several.

Connectors

The content model {heading_p?, stanza_p+} contains more than one component, and thus needs addition-
ally to specify the order in which these patterns (<heading p> and <stanza_p>) may appear. This ordering
is determined by the connector (the comma) used between its components. The comma connector indicates
that the patterns concerned must appear in the sequence given. Another commonly encountered connector is

15Tn XML, a single colon may also appear in a GI, where it has a special significance related to the use of namespaces, as further discussed in section
v.6.3 Namespaces. The characters defined by Unicode as combining characters and as extenders are also permitted, as are logograms such as Chinese
characters.

xxviii

v.3. XML structures

the vertical bar, representing alternation. If the comma in this example were replaced by a vertical bar, then a
<poem> would consist of either a heading or just stanzas — but not both!

Groups

In our example so far, the components of each content model have been either single patterns or text. It is
quite permissible, however, to define content models in which the components are lists of patterns, combined by
connectors. Such lists may also be modified by occurrence indicators and themselves combined by connectors.
To demonstrate these facilities, let us expand our example to include non-stanzaic types of verse. For the sake
of demonstration, we will categorize poems as one of the following: stanzaic, couplets, or blank (or stichic). A
blank-verse poem consists simply of lines (we ignore the possibility of verse paragraphs for the moment),!¢ so
no additional elements need be defined for it. A couplet is defined as a <firstLine> followed by a <secondLine>.

couplet p = element couplet {firstLine p, secondLine p}

The patterns firstLine_p and secondLine_p define elements <firstLine> and <secondLine> (which are
distinguished to enable studies of rhyme scheme, for example!”); these will have exactly the same content
model as the existing <line> element. We will therefore add the following two lines to our example schema:

firstLine p = element firstlLine {text}
secondLine p = element secondLine {text}

Next, we can change the declaration for the <poem> element to include all three possibilities:

poem p = element poem
{ heading p?, (stanza p+ | couplet p+ | line p+) }

That is, a poem consists of an optional heading, followed by one or several stanzas, or one or several couplets,
or one or several lines. Note the difference between this declaration and the following:

poem p = element poem
{heading p?, (stanza p | couplet p | line p)+ }

The second version, by applying the occurrence indicator to the group rather than to each element within it,
would allow a single poem to contain a mixture of stanzas, couplets, and lines.

A group of this kind can contain text as well as named elements: this combination, known as mixed content,
allows for elements in which the sub-components appear with intervening stretches of character data. For
example, if we wished to mark place names wherever they appear inside our verse lines, then, assuming we
have also added a pattern for the <name> element, we could change the definition for <line> to

line p = element
line { (text | name p)* }

161t will not have escaped the astute reader that the fact that verse paragraphs need not start on a line boundary seriously complicates the issue; see
further section v.4 Complicating the issue.

7This is however a rather artificial example; XPath, for example, provides ways of distinguishing elements in an XML structure by their position
without the need to give them distinct names.

XXix

v. A Gentle Introduction to XML

v4

Some XML schema languages place no constraints on the way that mixed content models may be defined,
but in the XML DTD language, when text appears with other elements in a content model: it must always
appear as the first option in an alternation; it may appear once only, and in the outermost model group; and if
the group containing it is repeated, the star operator must be used. Although these constraints do not apply to
(for example) schemas expressed in the RELAX NG language, all TEI content models currently obey them.

Quite complex models can easily be built up in this way, to match the structural complexity of many types
of text. As a further example, consider the case of stanzaic verse in which a refrain or chorus appears. Like a
stanza, a refrain consists of repetitions of the line element. A refrain can appear at the start of a poem only, or
as an optional addition following each stanza. This could be expressed by a pattern such as the following:

refrain_p = element refrain {line p+}
poem p = element poem {heading p?, (line p+ | (refrain p?, (stanza p,
refrain p?)+)) }

That is, a poem consists of an optional heading, followed by either a sequence of lines or an unnamed
group, which starts with an optional refrain and is followed by one or more occurrences of another group,
each member of which is composed of a stanza followed by an optional refrain. A sequence such as refrain -
stanza - stanza - refrain follows this pattern, as does the sequence stanza - refrain - stanza - refrain. The sequence
refrain - refrain - stanza - stanza does not, however, and neither does the sequence stanza - refrain - refrain -
stanza. Among other conditions made explicit by this content model are the requirements that at least one
stanza must appear in a poem, if it is not composed simply of lines, and that if there is both a heading and a
stanza they must appear in that order.

Note that the apparent complexity of this model derives from the constraints expressed informally above. A
simpler model, such as

poem p =
element poem {heading p?, (line p | refrain p | stanza p)+ }

would not enforce any of them, and would therefore permit such anomalies as a poem consisting only of
refrains, or an arbitrary mixture of lines and refrains.

Complicating the issue

In the simple cases described so far, we have assumed that one can identify the immediate constituents of every
element in a textual structure. A poem consists of stanzas, and an anthology consists of poems. Stanzas do not
float around unattached to poems or combined into some other unrelated element; a poem cannot contain an
anthology. All the elements of a given document type may be arranged into a hierarchic structure like a family
tree, with a single ancestor at one end and many children (mostly the elements containing simple text) at the
other. For example, we could represent an anthology containing two poems, the first of which contains two
four-line stanzas and the second a single stanza, by a tree structure like the following figure:

This graphic representation of the structure of an XML document is close to the abstract model implicit in
most XML processing systems. Most such systems now use a standardized way of accessing parts of an XML
document called XPath.'® XPath gives us a non-graphical way of referring to any part of an XML document:
for example, we might refer to the last line of Blake's poem as /anthology/poem[1]/stanza[2]/1ine[4]. The
square brackets here indicate a numerical selection: we are talking about the fourth line in the second stanza

8The official specification is at Clark and DeRose (eds.) (1999); many introductory tutorials are available in the XML references cited above
and elsewhere on the Web: good beginners' tutorials include http://www.w3schools. com/xpath/default.asp and http://www.zvon.org/xxl/
XPathTutorial/, the latter being available in several languages.

http://www.w3schools.com/xpath/default.asp
http://www.zvon.org/xxl/XPathTutorial/
http://www.zvon.org/xxl/XPathTutorial/

v.4. Complicating the issue

—{ poeml1

athology |

» poem2

of the first poem in the anthology. If we left out all the square-bracketted selections, the corresponding XPath
expression would refer to all lines contained by stanzas contained by poems contained by anthologies. An
XPath expression can refer to any collection of elements: for example, the expression /anthology/poem refers
to all poems in an anthology and the expression /anthology/poem/heading refers to all their headings.

The solidus within an XPath expression behaves in much the same way as the solidus or backslash in a
filename specification: it indicates that the item to the left directly contains the item to the right of it. In
XPath it is also possible to indicate that any number of other items may intervene by repeating the solidus.
For example, the XPath expression /anthology/poem//line[1] will refer to the first line of each poem in the
anthology, irrespective of whether it is in a stanza.

Clearly, there are many such trees that might be drawn to describe the structure of this or other anthologies.
Some of them might be representable as further subdivisions of this tree: for example, we might subdivide
the lines into individual words, since in our simple example no word crosses a line boundary. Surprisingly
perhaps, this grossly simplified view of what text is (memorably termed an ordered hierarchy of content objects
(OHCO) view of text by Renear et al.'?) turns out to be very effective for a large number of purposes. It is not,
however, adequate for the full complexity of real textual structures, for which more complex mechanisms need
to be employed. There are many other trees that might be drawn which do not fit within the anthology model
which we have presented so far. We might, for example, be interested in syntactic structures or other linguistic
constructs, which rarely respect the formal boundaries of verse. Or, to take a simpler example, we might want
to represent the pagination of different editions of the same text.

In the OHCO model of text, representation of cases where different elements overlap so that several different
trees may be identified in the same document is generally problematic. All the elements marked up in
a document, no matter what namespace they belong to, must fit within a single hierarchy. To represent
overlapping structures, therefore, a single hierarchy must be chosen, and the points at which other hierarchies
intersect with it marked. For example, we might choose the verse structure as our primary hierarchy, and then

19See Renear et al. (1996),

XxxXi

v. A Gentle Introduction to XML

mark the pagination by means of empty elements inserted at the boundary points between one page and the
next. Or we could represent alternative hierarchies by means of the pointing and linking mechanisms described
in chapter 16. Linking, Segmentation, and Alignment of the Guidelines. These mechanisms all depend on the use
of attributes, which may be used both to identify particular elements within a document and to point to, link,
or align them into arbitrary structures.

v.5 Attributes

In the XML context, the word attribute, like some other words, has a specific technical sense. It is used to
describe information that is in some sense descriptive of a specific element occurrence but not regarded as
part of its content. For example, you might wish to add a status attribute to occurrences of some elements
in a document to indicate their degree of reliability, or to add an identifier attribute so that you could refer
to particular element occurrences from elsewhere within a document. Attributes are useful in precisely such
circumstances.

Although different elements may have attributes with the same name (for example, in the TEI scheme, every
element is defined as having an attribute named n), they are always regarded as different, and may have different
values assigned to them. If an element has been defined as having attributes, the attribute values are supplied
in the document instance as attribute-value pairs inside the start-tag for the element occurrence. An end-tag
cannot contain an attribute-value specification, since it would be redundant.

The order in which attribute-value pairs are supplied inside a tag has no significance; they must, however,
be separated by at least one whitespace (blank, newline, or tab) character. The value part must always be given
inside matching quotation marks, either single or double?’.

For example:

<poem xml:id="P1" status="draft"> ... </poem>

Here attribute values are being specified for two attributes previously declared for the <poem> element:
xml:id and status. For the instance of a <poem> in this example, represented here by an ellipsis, the xml:id
attribute has the value P1 and the status attribute has the value draft. An XML processor can use the values
of the attributes in any way it chooses; for example, a <poem> in which the status attribute has the value draft
might be formatted differently from one in which the same attribute has the value revised; another processor
might use the same attribute to determine whether or not poem elements are to be processed at all. The xml:id
attribute is a slightly special case in that, by convention, it is always used to supply a unique value to identify
a particular element occurrence, which may be used for cross-reference purposes, as discussed further below
(v.5.2 Identifiers and indicators).

v.5.1 Declaring attributes

Attributes are declared in a schema in the same way as elements. As well as specifying an attribute's name and
the element to which it is to be attached, it is possible to specify (within limits) what kind of value is acceptable
for an attribute.

In the compact syntax of RELAX NG, an attribute is defined by means of an attribute pattern, like the
following:

att.status = attribute status {"draft" | "revised" | "published"}

201n the unlikely event that both kinds of quotation marks are needed within the quoted string, either or both can also be presented in escaped form,
using the predefined character entities &apos ; or "

XXXii

v.5. Attributes

This defines a new pattern, called att. status, whose value is an attribute pattern defining an attribute named
status. Attribute names are subject to the same restrictions as other names in XML; they need not be unique
across the whole schema, however, but only within the list of attributes for a given element.

A pattern defining the possible values for this attribute is given within the curly braces, in just the same way
as a content model is given for an element pattern. In this case, the attribute's value must be one of the strings
presented explicitly above.

The attribute pattern definition must be included or referenced within the definition for every element to
which the attribute is attached. We therefore modify the definition for the poem_p pattern given above as
follows:

poem p = element poem {att.status?, heading p?, stanza p+}

In RELAX NG, an element pattern simply includes any attribute patterns applicable to it along with its other
constituents, as shown above. Attribute patterns can also be grouped and alternated in the same way as element
patterns, though this particular feature is not widely used in the TEI scheme, since it is not available to the same
extent in all schema languages. Because a question mark follows the reference to the att. status pattern in our
example, a document in which the status attribute is not specified will still be valid; without this occurrence
indicator the status attribute would be required.

Instead of supplying a list of explicit values, an attribute pattern can specify that the attribute must have a
value of a particular type, for example a text string, a numeric value, a normalized date, etc. This is accomplished
by supplying a pattern that refers to a datatype. In the example above, because a list of acceptable values is
predefined, a parser can check that no <poem> is defined for which the status attribute does not have one of
draft, revised, or published as its value. By contrast, with a definition such as

att.status =
attribute status {text}

a parser would accept almost any unbroken string of characters (status="awful", status="awe-ful", or
status="12345678") as valid for this attribute. Sometimes, of course, the set of possible values cannot be
predefined. Where it can, as in this case, it is generally better to do so.

Schema languages vary widely in the extent to which they support validation of attribute values. Some
languages predefine a small set of possibilities. Others allow the schema designer to use values from a
predefined ‘library’ of possible datatypes, or to add their own definitions, possibly of great complexity. A
‘datatype’ might be something fairly general (any positive integer), something very specific or idiosyncratic (any
four-character string ending with "T"), or somewhere between the two. In the RELAX NG schemas used by
the TEI, general patterns have been defined for about half a dozen datatypes (using the W3C Schema Datatype
Library, http://www.w3.0rg/TR/xmlschema- 2/, and discussed further in 1.4.2. Datatype Macros). In addition
to the two possibilities already mentioned — plain text or an explicit list of possible strings — other datatypes
likely to be encountered include the following:

boolean values must be either true or false
numeric values must represent a numeric quantity of some kind
date values must represent a possible date and time in some calendar

Two further datatypes of particular usefulness in managing XML documents are commonly known as ID —
for identifier — and URI — for Universal Resource Indicator, or pointer for short. These are discussed in the
next section.

xxxiii

http://www.w3.org/TR/xmlschema-2/

V. A

Gentle Introduction to XML

v.5.2

Identifiers and indicators

It is often necessary to refer to an occurrence of one textual element from within another, an obvious example
being phrases such as ‘see note 6" or ‘as discussed in chapter 5. When a text is being produced the actual
numbers associated with the notes or chapters may not be certain. If we are using descriptive markup, such
things as page or chapter numbers, being entirely matters of presentation, will not in any case be present in the
marked-up text: they will be assigned by whatever processor is operating on the text (and may indeed differ
in different applications). XML therefore predefines an attribute that may be used to provide any element
occurrence with a special identifier, a kind of label, which may be used to refer to it from anywhere else: since
it is defined in the XML namespace, the name of this attribute is xml:id and it is used throughout the TEI
schema. Because it is intended to act as an identifier, its values must be unique within a given document. The
cross-reference itself will be supplied by an element bearing an attribute of a specific kind, which must also be
declared in the schema.

Suppose, for example, we wish to include a reference within the notes on one poem that refers to another
poem. We will first need to provide some way of attaching a label to each poem: this is easily done using the
xml:id attribute. Note that not every poem need carry an xml:id attribute and the parser may safely ignore the
lack of one in those that do not. Only poems to which we intend to refer need use this attribute; for each such
poem we should now include in its start-tag some unique identifier, for example:

<poem xml:id="Rose"> ... </poem>
<poem xml:id="P40"> ... </poem>
<poem> ... </poem>

Next we need to define a new element for the cross-reference itself. This will not have any content — it is only
a pointer - but it has an attribute, the value of which will be the identifier of the element pointed at. This is
achieved by the following definition:

poemRef p = element poemRef {attribute target {anyURI}, empty}

The <poemRef> element has no content, but a single attribute called target. The value of this attribute must
be a pointer or web reference of type anyURI;2! furthermore, because there is no indication of optionality on the
attribute pattern, it must be supplied on each occurrence — a <poemRef> with no referent is an impossibility.

With these declarations in force, we can now encode a reference to the poem whose xml:id attribute specifies
that its identifier is Rose as follows:

Blake's poem on the sick rose
<poemRef target='#Rose'/> ...

A processor may take any number of actions when it encounters a link encoded in this way: a formatter
might construct an exact page and line reference for the location of the poem in the current document and
insert it, or just quote the poem's title or first lines. A hypertext style processor might use this element as a
signal to activate a link to the poem being referred to, for example by displaying it in a new window. Note,
however, that the purpose of the XML markup is simply to indicate that a cross-reference exists: it does not
necessarily determine what the processor is to do with it.

2I'The word ‘anyURT is a predefined name, used in schema languages to mean that any Uniform Resource Identifier (URI) may be supplied here. The
accepted syntax for URIs is an Internet Standard, defined in|http://tools.ietf.org/html/rfc3986. anyURI is one of the datatypes defined by the
W3C Schema datatype library.

XXXiV

http://tools.ietf.org/html/rfc3986

v.6. Other components of an XML document

v.6

v.6.1

The target of a URI can be located anywhere: it may not necessarily be part of the same document, nor
even located on the same computer system. Equally, it can be a resource of any kind, not necessarily an
XML document or document fragment. It is thus a very convenient way of including references to non-XML
data such as image files within a document. If, for example, we wished to include an illustration containing a
reproduction of Blake's original in our anthology, the most appropriate method would probably be to define a
new element called (for the sake of argument) <graphic> with a target attribute of datatype URI:

graphic_p = element graphic {att.url, empty} att.url =
attribute url {anyURI}

With these additions to the schema, we can now represent the location of the illustration within our text like
this:

<poem><graphic
url="http://en.wikisource.org/wiki/Image:Blake_sick rose.jpg"/>
</poem>

By providing a location from which a reproduction of the required image can be downloaded, this encoding
makes it possible for appropriate software able to display the image as well as record its existence.

Attributes form part of the structure of an XML document in the same way as elements, and can therefore
be accessed using XPath. For example, to refer to all the poems in our anthology whose status attribute has the
value draft, we might use an XPath such as /anthology/poem[@status="draft']. To find the headings of all
such poems, we would use the XPath /anthology/poem[@status="draft']/heading.

Other components of an XML document

In addition to the elements and attributes so far discussed, an XML document can contain a few other formally
distinct things. An XML document may contain references to predefined strings of data that a validator
must resolve before attempting to validate the document's structure; these are called entity references. They
may be useful as a means of providing ‘boilerplate’ text or representing character data which cannot easily
be keyboarded. An XML document may also contain arbitrary signals or flags for use when the document
is processed in a particular way by some class of processor (a common example in document production is
the need to force a formatter to start a new page at some specific point in a document); such flags are called
processing instructions. And, as noted earlier, an XML document may also contain instances of elements taken
from some other namespace. We discuss each of these three cases in the rest of this section.

Character References

As mentioned above, all XML documents use the same internal character encoding. Since not all computer
systems currently support this encoding directly, a special syntax is defined that can be used to represent
individual characters from the Unicode character set in a portable way by providing their numeric value, in
decimal or hexadecimal notation.

For example, the character ¢ is represented within an XML document as the Unicode character with
hexadecimal value 00E9. If such a document is being prepared on (or exported to) a system using a different
character set in which this character is not available, it may instead be represented by the character reference
é (the x indicating that what follows is a hexadecimal value) or é (its decimal equivalent).
References of this type do not need to be predefined, since the underlying character encoding for XML is
always the same.

To aid legibility, however, it is also possible to use a mnemonic name (such as eacute) for such character
references, provided that each such name is mapped to the required Unicode value by means of a construct

v. A Gentle Introduction to XML

known as an entity declaration. A reference to a named character entity always takes the form of an ampersand,
followed by the name, followed by a semicolon. For example an XML document containing the string “T&C
might be encoded as T& C.

There is a small set of such character entity references that do not have to be declared because they form part
of the definition of XML. These include the names used for characters such as the ampersand (amp) and the
open angle bracket or less-than sign (1t), which could not easily otherwise be included in an XML document
without ambiguity. Other predeclared entity names are those for quotation marks (quot and apos for double
and single respectively), and for completeness the closing angle bracket or greater-than sign (gt).

For all other named character entities, a set of entity declarations must be provided to an XML processor
before the document referring to them can be validated. The declaration itself uses a non-XML syntax inherited
from SGML; for example, to define an entity named eacute with the replacement value é, the declaration could
have any of the following forms:

<!ENTITY eacute
||é||>

or, using hexadecimal notation:

<!ENTITY
eacute "é">

or, using decimal notation:

<!ENTITY eacute "é">

Entities of this kind are useful also for string substitution purposes, where the same text needs to be repeated
uniformly throughout a text. For example, if a declaration such as

<!ENTITY TEI "Text Encoding Initiative">

is included with a document, then references such as &TEI; may be used within it, each of which will be
expanded in the same way and replaced by the string “Text Encoding Initiative’ before the text is validated.

v.6.2 Processing instructions

Although one of the aims of using XML is to remove any information specific to the processing of a document
from the document itself, it is occasionally very convenient to be able to include such information — if only
so that it can be clearly distinguished from the structure of the document. As suggested above, one common
example is the need, when processing an XML document for printed output, to include a suggestion that the
formatting processor might use to determine where to begin a new page of output. Page-breaking decisions are
usually best made by the formatting engine alone, but there will always be occasions when it may be necessary
to override these. An XML processing instruction inserted into the document is one very simple and effective
way of doing this without interfering with other aspects of the markup.
Here is an example XML processing instruction:

<?tex \newpage ?>

XXXVi

v.6. Other components of an XML document

It begins with <? and ends with ?>. In between are two space-separated strings: by convention, the first is
the name of some processor (tex in the above example) and the second is some data intended for the use of
that processor (in this case, the instruction to start a new page). The only constraint placed by XML on the
strings is that the first one must be a valid XML name; the other can be any arbitrary sequence of characters,
not including the closing character-sequence 7>.

A construct which looks like a processing instruction (but is not) is the XML declaration which can be
supplied at the beginning of an XML document, for example:

<?xml
version="1.0" encoding="iso0-8859-1"7>

The XML declaration specifies the version number of the XML Recommendation applicable to the document
itintroduces (in this case, version 1.0), and optionally also the character encoding used to represent the Unicode
characters within it. By default an XML document uses the character encoding UTF-8 or UTF-16; in this
case, the 16-bit characters of Unicode have been mapped to the 8-bit character set known as ISO 8859-1;
any characters present in the document but not available in the target character set will therefore need to be
represented as character references (v.6.1 Character References). The XML declaration is purely documentary,
but if it is wrong many XML-aware processors will be unable to process the associated text.

v.6.3 Namespaces

A valid XML document necessarily specifies the schema in which its constituent elements are defined.
However, a well-formed XML document is not required to specify its schema (indeed, it may not even have a
schema). It would still be useful to indicate that the element names used in it have some defined provenance.
Furthermore, it might be desirable to include in a document elements that are defined (possibly differently) in
different schemas. A cabinet-maker's schema might well define an element called <table> with very different
characteristics from those of a documentalist's.

The concept of namespace was introduced into the XML language as a means of addressing these and related
problems. If the markup of an XML document is thought of as an expression in some language, then a
namespace may be thought of as analogous to the lexicon of that language. Just as a document can contain
words taken from different languages, so a well-formed XML document can include elements taken from
different namespaces. A namespace resembles a schema in that we may say that a given set of elements ‘belongs
to’ a given namespace, or are ‘defined by’ a given schema. However, a schema is a set of element definitions,
whereas a namespace is really only a property of a collection of elements: the only tangible form it takes in an
XML document is its distinctive prefix and the identifying name associated with it.

Suppose for example that we wish to extend our anthology to include a complex diagram. We might start
by considering whether or not to extend our simple schema to include XML markup for such features as arcs,
polygons, and other graphical elements. XML can be used to represent any kind of structure, not simply text,
and there are clear advantages to having our text and our diagrams all expressed in the same way.

Fortunately we do not need to invent a schema for the representation of graphical components such as
diagrams; it already exists in the shape of the Scalable Vector Graphics (SVG) language defined by the W3C.*2
SVG is a widely used and rich XML vocabulary for representing all kinds of two-dimensional graphics; it is also
well supported by existing software. Using an SVG-aware drawing package, we can easily draw our diagram
and save it in XML format for inclusion within our anthology. When we do so, we need to indicate that this part
of the document contains elements taken from the SVG namespace, if only to ensure that processing software
does not confuse our <line> element with the SVG <line>, which means something quite different.

22The W3C Recommendation is defined athttp://www.w3.0rg/Graphics/SVG/,

XXXVii

http://www.w3.org/Graphics/SVG/

v. A Gentle Introduction to XML

An XML document need not specify any namespace: it is then said to use the ‘null’ namespace. Alternatively,
the root element of a document may supply a default namespace, understood to apply to all elements which
have no namespace prefix. This is the function of the xmlns attribute which provides a unique name for the
default namespace, in the form of a URL:

<anthology xmlns="http://www.example.net/anthology/ns">
</anthology>

In exactly the same way, on the root element for each part of our document which uses the SVG language,
we might introduce the SVG namespace name:

<anthology xmlns="http://www.example.net/anthology/ns">
<svg xmlns="http://www.w3.0rg/2000/svg">

</svg>

</anthology>

Although a namespace name usually uses the URI (Uniform Resource Identifier) syntax, it is not treated as
an online address and an XML processor regards it just as a string, providing a longer name for the namespace.

The xmlns attribute can also be used to associate a short prefix name with the namespace it defines. This
is very useful if we want to mingle elements from different namespaces within the same document, since the
prefix can be attached to any element, overriding the implicit namespace for itself (but not its children):

<anthology xmlns="http://www.example.net/anthology/ns"
xmlns:svg="http://www.w3.0rg/2000/svg">

<!-- anthology markup elements here -->
<svg:svg>

<!-- SVG markup elements here -->

</svg:svg>

<!-- more anthology markup elements here -->
</anthology>

There is no limit on the number of namespaces that a document can use. Provided that each is uniquely
identified, an XML processor can identify those that are relevant, and validate them appropriately. To extend
our example further, we might decide to add a linguistic analysis to each of the poems, using a set of elements
such as <aux>, <adj>, etc., derived from some pre-existing XML vocabulary for linguistic analysis.

<anthology xmlns="http://www.example.net/anthology/ns"
xmlns:gram="http://www.gram.org"
xmlns:svg="http://www.w3.0rg/2000/svg">

<!-- anthology markup elements here -->
<svg:svg>

<!-- SVG markup elements here -->
</svg:svg>

<line>

<gram:itj>0</gram:itj>
<gram:nom>Rose</gram:nom>
<gram:pron>thou</gram:pron>
<gram:aux>art</gram:aux >
<gram:adj>sick</gram:adj>
</line>

Xxxviii

v.7. Putting it all together

v.7

v.7.1

</anthology>

Marked Sections

We mentioned above that the syntax of XML requires the encoder to take special action if characters with a
syntactic meaning in XML (such as the left angle bracket or ampersand) are to be used in a document to stand
for themselves, rather than to signal the start of a tag or an entity reference respectively. The predefined entities
&, <, and > provide one method of dealing with this problem, if the number of occurrences of such
things is small. Other methods may be considered when the number is large, as in an XML document like the
present Guidelines, which contains hundreds of examples of XML markup. One is to label the XML examples
as belonging to a different namespace from that of the document itself, which is the approach taken in the
present Guidelines. Another and simpler approach is provided by one of the features inherited by XML from
its parent SGML: the ‘marked section.

A marked section is a block of text within an XML document introduced by the characters <! [CDATA[and
terminated by the characters] 1>. Between these rather strange brackets, markup recognition is turned off, and
any tags or entity references encountered are therefore treated as if they were plain text. For example, when
we come to write the users' manual for our anthology, we may find ourselves often producing text like the
following:

Here is an example of the use of the <gi>line</gi> element:
<! [CDATA[<line>....</line>]]>

Putting it all together

In this chapter we have discussed most of the components of an XML document and its associated schema. We

have described informally how an XML document is represented, and also introduced one way of representing

the rules a RELAX NG validator might use to validate it. In a working system, the following issues will also

need to be addressed:

» how does a processor determine the schema (or schemas) that should be used to validate a given XML
document instance?

« ifadocument contains entity references that must be processed before the document can be validated, where
are those entities defined?

 an XML document instance may be stored in a number of different operating system files; how should they
be assembled together?

o how does a processor determine which stylesheets it should use when processing an XML document, or
how to interpret any processing instructions it contains?

« how does a processor enforce more exact validation than simple datatypes permit (for example of element
content)?

Different schema languages and different XML processing systems take very different positions on all of
these topics, since none of them is explicitly addressed in the XML specification itself. Consequently, the best
answer is likely to be specific to a particular software environment and schema language. Since this chapter
is concerned with XML considered independently of its processing environment, we only address them in
summary detail here.

Associating entity definitions with a document instance

In v.6.1 Character References we introduced the syntax used for the definition of named character entities such as
eacute, which XML inherited from SGML. Different schema languages vary in the ways they make a collection

XXXIiX

v. A Gentle Introduction to XML

of such definitions available to an XML processor, but fortunately there is one method that all current schema
languages support.

As well as, and following, the XML declaration (v.6.2 Processing instructions), an XML document instance
may be prefixed with a special DOCTYPE statement. This declarative statement has been inherited by XML from
SGML; in its full form it provides a large number of facilities, but we are here concerned only with the small
subset of those facilities recognized by all schema languages.

Here is an example DOCTYPE statement which we might consider prefixing to the final version of our
anthology:

<!DOCTYPE anthology [

<!ENTITY mdash "ߞ">

<!ENTITY legalese "This document is available under a Creative Commons
Share and Enjoy Licence">

1>

Any XML processor encountering this statement will use it to add the two named entities it defines to those
already predefined for XML. Before the document instance itself is validated, any references to these entities
will be expanded to the character string given. Thus, wherever in the document instance the string &legalese;
appears, it will be replaced by the formulation above. This makes life a little easier for those keyboarding our
anthology.*® The word anthology following the string DOCTYPE in this example is, of course, the name of
the root element of the document to which this declaration is prefixed; however, only an XML DTD processor
will take note of this fact.

v.7.2 Associating a document instance with its schema

Different schema languages adopt entirely different attitudes to this question. A document instance may be
valid according to many different schemas, each appropriate to a different processing task. In RELAX NG
therefore no facility for associating a particular schema with a particular instance exists: the task is regarded
as a specific case of the more general issues addressed by the general architectural framework within which
RELAX NG is defined: the ISO draft standard for Document Schema Definition Languages (DSDL).?*

In W3C Schema and in the DTD schema language inherited by XML from SGML, however, a document
instance can point directly to the resource or resources that may be used to validate it. In W3C Schema
Language, this is usually done by means of an attribute on the root element of the document instance; for
XML DTDs the DOCTYPE statement introduced in v.7.1 Associating entity definitions with a document instance is
used for this purpose.

Fortunately, any modern XML processing software tool will provide clear ways of carrying out this task
appropriate to the particular language chosen. In the interests of maximizing portability of document instances,
they should contain as little processing-specific information as possible.

v.7.3 Assembling multiple resources into a single document

As we have already indicated, a single XML document may be made up of several different operating system
files that need to be pulled together by a processor before the whole document can be validated. The XML
DTD language defines a special kind of entity (a system entity) that can be used to embed references to whole
files into a document for this purpose, in much the same way as the character or string entities discussed in

23 And, indeed, for those responsible for deciding the licencing conditions if they change their minds later.

24DSDL is a project of ISO/IEC JTC 1/SC 34 WG 1, the object of which is to ‘bring together different validation-related tasks and expressions to form
a single extensible framework that allows technologies to work in series or in parallel to produce a single or a set of validation results. The extensibility
of DSDL accommodates validation technologies not yet designed or specified’ (http://dsdl.org).

xl

http://dsdl.org

v.7. Putting it all together

v.6.1 Character References. Neither RELAX NG nor W3C Schema directly supports this mechanism, however,
and we do not discuss it further here.

An alternative way of achieving the same effect is to use a special kind of pointer element to refer to the
resources that need to be assembled, in exactly the same way as we proposed for the illustration in our
anthology. The W3C Recommendation XML Inclusions (XInclude)?> defines a generic mechanism for this
purpose, which is supported by an increasing number of XML processors.

v.7.4 Stylesheet association and processing

As mentioned above, the processing of an XML document will usually involve the use of one or more
stylesheets, often but not exclusively to provide specific details of how the document should be displayed or
rendered. In general, there is no reason to associate a document instance with any specific stylesheet and the
schema languages we have discussed so far do not therefore make any special provision for such association.
The association is made when the stylesheet processor is invoked, and is thus entirely application-specific.
However, since one very common application for XML documents is to serve them as browsable documents
over the Web, the W3C has defined a procedure and a syntax for associating a document instance with its
stylesheet (see |http://www.w3.0rg/TR/xml-stylesheet/). This Recommendation allows a document to
supply a link to a default stylesheet and also to categorize the stylesheet according to its MIME type, for example
to indicate whether the stylesheet is written in CSS or XSLT, using a specialized form of processing instruction.
Assuming therefore that we have made a CSS-conformant stylesheet for our anthology and stored it in a
file called anthology.css which is available from the same location as the anthology itself, we could make it
available over the Web simply by adding a processing instruction like the following to the anthology:

<?xml-stylesheet href="anthology.css"
type="text/css"?>

Multiple stylesheets can be defined for the same document, and options are available to specify how a web
browser should select amongst them. For example, if the document also contained a directive:

<?xml-stylesheet href="anthology m.css"
type="text/css" media="mobile"?>

a different stylesheet called anthology m.css could be used when rendering the document on a handheld
device such as a mobile phone.

Most modern web browsers support CSS (although the extent of their implementation varies), and some of
them support XSLT.

Content validation

As we noted above, most schema languages provide some degree of datatype validation for attribute values
(v.5.1 Declaring attributes). They vary greatly in the validation facilities they offer for the content of elements,
other than the syntactic constraints already discussed. Thus, while we may very easily check that our <stanza>
elements contain only <line> elements, we cannot easily check that <line> elements contain between five and
500 correctly-spelled English words, should we wish to constrain our poetry in such a way. Also, because
attributes and elements are treated differently, it is difficult or impossible to express co-occurrence constraints:
for example, if the status of a poem is draft we might wish to permit elements such as <editorialQuery> within
its content, but not otherwise.

25http://www.w3.or‘g/TR/xinclude/.

xli

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xinclude/

v. A Gentle Introduction to XML

The XML DTD language offers very little beyond syntactic checking of element content. By contrast, a major
impetus behind the design and development of the W3C schema language was the addition of a much more
general and powerful constraint language to the existing structural constraints of XML DTDs. In RELAX NG
the opposite approach was taken, in that all datatype validation, whether of attributes or element content, is
regarded as external to the schema language. For attributes, as we have seen, RELAX NG makes use of the
W3C Schema Datatype Library (but permits use of others). Because RELAX NG treats both elements and
attributes as special cases of patterns, the same datatype validation facilities are available for element content
as for attribute values; it is unlike other schema languages in this respect. In addition, for content validation,
a different component of DSDL known as Schematron can be used. Schematron is a pattern matching (rather
than a grammar-based) language, which allows us to test the components of a document against templates that
express constraints such as those mentioned above.

Like other XML processors, Schematron uses XPath to identify parts of an XML document; in addition,
it provides elements that describe assertions to be tested and conditions which must be validated, as well as
elements to report the results of the test.

xlii

Languages and Character Sets

The documents which users of these Guidelines may wish to encode encompass all kinds of material, potentially
expressed in the full range of written and spoken human languages, including the extinct, the non-existent,
and the conjectural. Because of this wide scope, special attention has been paid to two particular aspects of
the representation of linguistic information often taken for granted: language identification, and character
encoding.

Even within a single document, material in many different languages may be encountered. Human culture,
and the texts which embody it, is intrinsically multilingual, and shows no sign of ceasing to be so. Traditional
philologists and modern computational linguists alike work in a polyglot world, in which code-switching
(in the linguistic sense) and accurate representation of differing language systems constitute the norm, not
the exception. The current increased interest in studies of linguistic diversity, most notably in the recording
and documentation of endangered languages, is one aspect of this long standing tradition. Because of their
historical importance, the needs of endangered and even extinct languages must be taken into account when
formulating Guidelines and recommendations such as these.

Beyond the sheer number and diversity of human languages, it should be remembered that in their written
forms they may deploy a huge variety of scripts or writing systems. These scripts are in turn composed of
smaller units, which for simplicity we term here characters. A primary goal when encoding a text should
be to capture enough information for subsequent users of it correctly to identify both language, script, and
constituent characters. In this chapter we address this requirement, and propose recommended mechanisms
to indicate the languages, scripts and characters used in a document or a part thereof.

Identification of language is dealt with in vi.I Language identification. In summary, it recommends the use of
pre-defined identifiers for a language where these are available, as they increasingly are, in part as a result of the
twin pressures of an increasing demand for language-specific software and an increased interest in language
documentation. Where such identifiers are not available or not standardized, these Guidelines recommend
a way of documenting language identifiers and their significance, in the same way as other metadata is
documented in the TEI Header.

Standardization of the means available to represent characters and scripts has moved on considerably since
the publication of the first version of these Guidelines. At that time, it was essential to explicitly document the
characters and encoded character sets used by almost any digital resource if it was to have any chance of being
usable across different computer platforms or environments, but this is no longer the case. With the availability
of the Unicode standard, almost 100,000 different characters representing almost all of the world's current
writing systems are available and usable in any XML processing environment without formality. Nevertheless,
however large the number of standardized characters, there will always be a need to encode documents which
use non-standard characters and glyphs, particularly but not exclusively in historical material. Furthermore,
the full potential of Unicode is still not yet realised in all software which users of the Guidelines are likely

xliii

vi. Languages and Character Sets

vi.1

to encounter. The second part of this chapter therefore discusses in some detail the concepts and practice
underlying this standard, and also introduces the methods available for extending beyond it, which are more
tully discussed in 5. Representation of Non-standard Characters and Glyphs.

Language identification
Identification of the language a document or part thereof is written in is a crucial requirement for many
envisioned usages of an electronic document. The TEI therefore accomodates this need in the following way:

o A global attribute xml:lang is defined for all TEI elements. Its value identifies the language and writing
system used.

 The TEI Header has a section set aside for the information about the languages used in a document: see
further 2.4.2. Language Usage.

The value of the attribute xml:lang identifies the language using a coded value. For maximal compatibility
with existing processes, modelling this value in the following way is recommended (this parallels the modelling
of xml:lang):

« The identifier for the language should be constructed as in Best Current Practice 47 . This same identifier has
to be used to identify the corresponding <language> element in the TEI header, if one is present.

The first part of BCP 47 is called Tags for Identifying Languages®, and proposes the following mechanism for
constructing an identifier (tag) for languages as administered by the Internet Assigned Numbers Authority
(IANA). The tag is assembled from a sequence of subtags separated by the hyphen (-, U+002D) character. It
gives the language (possibly further identified with a sublanguage), a script and a region for this language, each
possibly followed by a variant subtag.

o The identifier consists of at least one ‘primary’ subtag, it may be followed by one or more ‘extended’ subtags.

« Languages are identified by a language subtag, which may be a two letter code taken from ISO 639-1 or a
three letter code taken from ISO 639-2.

o ISO 639-2 reserves for private use codes in the range 'qaa’ to 'qtz’. These codes should be used for non-
registered language subtags.

« A single letter primary subtag "x" indicates that the whole language tag is privately used.

nn

« Extended language subtags must begin with the letter "s". They must follow the primary subtag and precede
subtags that do define other properties of the language. The order is significant.

o 4 character subtags are interpreted as script identifiers taken from ISO 15924

+ Region subtags can be either two letter country codes taken from ISO 3166 (with exceptions) or 3 digit codes
from the UN Standard Country Codes for Statistical Use.

« Variant subtags may follow any of the above, but must precede private use extensions.

n_n

« Private use extensions are separated from the other subtags by the single letter subtag "x", which must be
followed by at least one subtag. They might consist of several subtags separated with "-", but may not exceed
a length of 32 characters.

Examples of language tags

* Simple language subtag
- de (German)

- ja (Japanese)

!Currently BCP 47 comprises two Internet Engineering Task Force documents, referred to separately as RFC 4646 and RFC 4647; over time, other
IETF documents may succeed these as the best current practice.
2Phillips, Addison and Davis, Mark, Tags for Identifying Languages2006-09: http://tools.ietf.org/html/bcp47

xliv

http://tools.ietf.org/html/bcp47

vi.l. Language identification

- zh (Chinese)

* Language subtag plus Script subtag
- zh-Hant (Traditional Chinese)

- en-Latn (English written in Latin script)

- sr-Cyrl (Serbian written with Cyrillic script)

* Language-Script-Region
- zh-Hans-CN (Simplified Chinese for the PRC)
- sr-Latn-891 (Serbian, Latin script, Serbia and Montenegro)

* Language-Region
- zh-SG (Chinese for Singapore)
- de-DE (German for Germany)

* Other
- zh-CN (Chinese in China, no script given)

- zh-Latn (Chinese transcribed in the Latin script)

* Extended:
- de-CH-x-phonebook (phonebook collation for Swiss German)

- zh-s-nan (the Southern Min language of the macrolanguage Chinese)

- zh-s-nan-Hans-CN (the Southern Min language of the macrolanguage Chinese as spoken in China written
in simplified Characters)

- zh-Latn-x-pinyin (Chinese transcribed in the Latin script using the Pinyin system)

It should be noted that capitalization given here follows established convention (e.g. capital letters for
country codes, small letters for language codes), but BPC 47 does not ascribe any meaning to differences in
capitalization.

As can be seen, both BPC 47 and ISO 639-2 provide extensions that can be employed by private convention.
The constructs mentioned above can thus be used to generate identifiers for any language, past and present,
in any used in any area of the world. If such private extensions are used within the context of the TEI, they
should be documented within the <language> element of the TEI header, which might also provide a prose
description of the language described by the language tag.

While language, region and script can be adequately identified using this mechanism, there is only very
rough provision to express a dimension of time for the language of a document; those codes provided (e.g.
grc for ‘Greek, Ancient (to 1453)” in ISO 639-2) might not reflect the segments appropriate for a text at hand.
Text encoders might express the time window of the language used in the document by means of the extension
mechanism defined in BCP 47 and relate that to a <date> element in the corresponding <language> section of
the TEI header.

Equivalences to language identifiers by other authorities can be given in the <language> section as well, but
no formal mechanism for doing so has been defined.

The scope of the language identification is extending to the whole subtree of the document anchored at the
element that carries the xml:lang attribute, including all elements and all attributes where a language might

apply.’

3This will exclude all attributes where a non-textual datatype has been specified, for example tokens, boolean values or predefined value lists.

xlv

vi. Languages and Character Sets

vi.2 Characters and Character Sets

All document encoding has to do with representing one thing by another in an agreed and systematic way.
Applied to the smallest distinctive units in any given writing system, which for the moment we may loosely
call ‘characters, such representation raises surprisingly complex and troublesome issues. The reasons are
partly historical and partly to do with conceptual unclarities about what is involved in identifying, encoding,
processing and rendering the characters of a natural language.

vi.2.1 Historical considerations

When the first methods of representing text for storage or transmission by machines were devised, long before
the development of computers, the overriding aim was to identify the smallest set of symbols needed to convey
the essential semantic content, and to encode that symbol set in the most economical way that the storage or
transmission media allowed. The initial outcome were systems that encoded only such content as could be
expressed in uppercase letters in the Latin script, plus a few punctuation marks and some ‘control characters’
needed to regulate the storage and transmission devices. Such encodings, originally developed for telegraphy,
strongly influenced the way the pioneers of computing conceived of and implemented the handling of text,
with consequences that are with us still.

For many years after the invention of computers, the way they represented text continued to be constrained
by the imperative to use expensive resources with maximal efficiency. Even when storage and processing
costs began their dramatic fall, the Anglo-centric outlook of most hardware designers and software engineers
hampered initiatives to devise a more generous and flexible model for text representation. The wish to retain
compatability with ‘legacy’ data was an additional disincentive. Eventually, tension in East Asia between
commitment to technological progress and the inability of existing computers to cope with local writing
systems led to decisive developments. Japanese, Korean and Chinese standards bodies, who long before
the advent of computers had been engaged in the specification of character sets, joined with computer
manufacturers and software houses to devise ways of mapping those character sets to numeric encodings and
processing the resulting text data.

Unfortunately, in the early years there was little or no co-ordination among either the national standards
bodies or the manufacturers concerned, so that although commercial necessity dictated that these various local
standards were all compatible with the representation of US-American English, they were not straightforwardly
compatible with one another. Even within Japan itself there emerged a number of mutually incompatible
systems, thanks to a mixture of commercial rivalry, disagreements about how best to manage certain intractable
problems, and the fact that such pioneering work inevitably involved some false starts, leading to incompatibil-
ities even between successive products of the same bodies. Roughly at the same time, and for similar reasons,
multiple and incompatible ways of representing languages that use Cyrillic scripts were devised, along with
methods of encoding ancient writing systems which inevitably could not aim for compatibility with other
writing systems apart from basic Latin script. Many of the earliest projects that fed into the TEI were shaped
in this developmental phase of the computerised representation of texts, and it was also the context in which
SGML was devised and finalized.

SGML had of necessity to oftfer ways of coping with multiple writing systems in multiple representations;
or rather, it provided a framework within which SGML-compliant applications capable of handling such
multiple representations might be developed by those with sufficient financial and personnel resources (such
as are seldom found in academia). Earlier editions of these Guidelines offered advice on character set and
writing system issues addressed to the condition of those for whom SGML was the only feasible option. That
advice must now be substantially altered because of two closely-related developments: the availability of the
ISO/Unicode character set as an international standard, and the emergence of XML and related technologies
which are committed to the theory and practice of character representation which Unicode embodies.

xlvi

vi.2. Characters and Character Sets

vi.2.2 Terminology and key concepts

Before the significance of Unicode and the implications of the association between XML and Unicode can be
adequately explained, it is necessary to clarify some key concepts and attempt to establish an adequately precise
terminology for them.

a d a a a a a, a a a

AGungSes #Headlined #PChyungio #PilGI Armetican Arnetican Arnetican Arnetican Arnetcan Arnetican

Regular Regular Regular Regular Typewtiter Typewtiter Typewriter Typewtiter Typewriter Typewtiter
a a a a da a a a a a
Andale Mono Apple Apple Apple AppleGothic Applebdyung) Ahal Regular Avial Bold Arial balic Atial Bold
Regular Chahc ety LiGokhic — LiSungLight Regular o Regular Italic
a a a da d a d a a a
Arial Black Avial Marowe Arial Marrow Arial Matrow Adal Marrow Arial Ayuthays Baskendlle Baskendlle Baskendle
Regular Regular Bold Ikalic Boldltalic RoundedMT Regular Regular SerniBold Eold
a a a@a a a a4 a A O a
Bazkerdlle Baskendlle Baskendlle Biaukai BigCaslon BradleyHand Brush Script Capitals Century Century
Italic SerniBold Eold Italic Regular Mediurn ITCTT Bold MT lkalic Regular Gt hic Gothic Bald

Figure vi.1: Examples of the small latin a rendered with different fonts.

The word ‘character” will not of itself take us very far towards greater terminological precision. It tends to
be used to refer indiscriminately both to the visible symbol on a page and to the letter or ideograph which that
symbol represents, two things that it is essential to keep conceptually distinct. The visible symbol obviously has
some aspects by which we interpret it as representing one character rather than another; but its appearance may
also be significantly determined by features that have no effect on our notion of which character in a writing
system it represents. A familiar instance is the lowercase a, which in printed texts may be represented either by
a ‘single storey’ symbol (cf. figure 1 in the examples from Baskerville SemiBold or Century) or by a ‘two storey’
version (as in figure 1 in the examples from ArialRegular or Andale Mono Regular). We say that the single and
double-storey symbols both represent one and the same the same abstract character a using two different glyphs.
Similarly, an uppercase A in a serif typeface has additional strokes that are absent from the same letter when
printed using a sans-serif typeface, so that once again we have differing glyphs standing for the same abstract
character. In figure 1 there is even a font, Captials Regular, in which the glyph for the lowercase letter a looks
like a typical glyph for the character uppercase A. The distinction between abstract characters and glyphs is
fundamental to all machine processing of documents.

In most scholarly encoding projects, the accurate recording of the abstract characters which make up the
text is of prime importance, because it is the essential prerequisite of digitizing and processing the document
without semantic loss. In many cases (though there are important exceptions, to be touched on shortly) it
may not be necessary to encode the specific glyphs used to render those abstract characters in the original
document. An encoding that faithfully registers the abstract characters of a document allows us to search and
analyse our document's content, language and structure and access its full semantics. That same encoding,
however, may not contain sufficient information to allow an exact visual representation of the glyphs in the
source text or manuscript to be recreated.

The importance of this distinction between information content and its visual representation is not always
immediately apparent to people unused to the specific complexities of text handling by machine. Such users
tend to ask first what (in order of conceptual priority) should actually be their very last question: how do I geta
physical image that looks like character x in my source document to appear on to the screen or the output page?
Their first question should in fact be: how can I get an abstract representation of character x into my encoded
document in a way that will be universally and unambiguously identifiable, no matter what it happens to look
like in printout or on any particular display? And occasionally the response they receive as a result of their
misguided initial question is a custom ‘solution’ that satisfies their immediate rendering wishes at the price of

xlvii

vi. Languages and Character Sets

making their underlying document unintelligible to other users (or even to the original user in other times and
places) because it encodes the abstract character in an idiosyncratic way.

That said, there will certainly be documents or projects where it is a matter of scholarly significance that the
compositor or scribe chose to represent a given abstract character using one particular glyph or set of strokes
rather than a semantically-equivalent but visually distinct alternative, and in that case the specific appearance
of the form will have to be encoded on one way or another. But that encoding need not (and in most cases
will not) involve a notation that visually resembles the original, any more than italicised text in an original
document will be represented by the use of italic characters in the encoded version.

A collection of the abstract characters needed to represent documents in a given writing system is known as a
character set, and the character set or character repertoire of a processing or rendering device is the set of abstract
characters that it is equipped to recognise and handle appropriately. There is, however, a subtle distinction
between these two parallel uses of the same term, involving one more key concept which it is essential to grasp.
The character set of a document (or the writing system in which it is recorded) is purely a collection of abstract
characters. But the character set of a computing device is a set of abstract characters which have been mapped in
a well-defined way to a set of numbers or code points by which the device represents those abstract characters
internally. It can therefore be referred to as a coded character set, meaning a set of abstract characters each
of which has been assigned a numerical code point (or in some instances a sequence of code points) which
unambiguously identifies the character concerned.

It is now possible to use this terminology to say what Unicode is: it is a coded character set, devised and
actively maintained by an international public body, where each abstract character is identified by a unique
name and assigned a distinctive code point.* Unicode is distinguished from other, earlier and co-existing
coded character sets by its (current and potential) size and scope; its built-in provision for (in practical terms)
limitless expansion; the range and quality of linguistic and computational expertise on which it draws; the
commitment in principle (and to an increasing degree in practice) to implement it by all important providers
of hardware and software worldwide; and the stability, authority and accessibility it derives from its status as
an international public standard.

vi.2.3 Abstract characters, glyphs and encoding scheme design

The distinction between abstract characters and glyphs can be crucial when devising an encoding scheme.
Users performing text retrieval, searching or concordancing will expect the system to recognise and treat
different glyphs as instances of the same character; but when perusing the text itself they may well expect
to see glyph variants preserved and rendered. When encoding a pre-existing text, the encoder must determine
whether a particular letter or symbol is a character or a glyphic variant. A detailed model of the relationship
between characters and glyphs has been developed within the Unicode Consortium and an ISO work group
(ISO/IEC JTC1 SC2/W@G2). Its report (Unicode Technical Report 17: Character Encoding Model) will form
the base for much future standards work.

The model makes explicit the distinction between two different properties of the components of written
language:
o their content, i.e. its meaning and phonetic value (represented by a character)

« their graphical appearance (represented by a glyph)

When searching for information, a system generally operates on the content aspects of characters, with little
or no attention to their appearance. A layout or formatting process, on the other hand, must of necessity
be concerned with the exact appearance of characters. Of course, some operations (hyphenation for example)
require attention to both kinds of feature, but in general the kind of text encoding described in these Guidelines
tends to focus on content rather than appearance (see further 6.3 Highlighting and Quotation).

4 Although only Unicode is mentioned here explicitly, it should be noted that the character repertoire and assigned code points of Unicode and the
ISO standard 10646 are identical and maintained in a way that ensures this continues to be the case.

xlviii

http://www.unicode.org/reports/tr17/

vi.2. Characters and Character Sets

An encoder wishing to record information about which glyphs are present in a given document may do so
at either or both of two levels:

« the level of character encoding, using an appropriate Unicode code point to represent the glyph concerned

« the markup level, with the glyph indicated via appropriate elements and/or attributes

The encoding practice adopted may be guided by, among other things, an assessment of the most frequent
uses to which the encoded text will be put. For example, if recognition of identical characters represented by
a variety of glyphs is the main priority, it may be advisable to represent the glyph variations at markup level,
so that the character value can be immediately exposed to the indexing and retrieval software. Plainly, an
encoding project will need to consider such issues carefully and embody the outcome of their deliberations
in local manuals of procedure to ensure encoding consistency. Using Unicode code points to represent glyph
information requires that such choices be documented in the TEI Header. Such documentation does cannot of
itself guarantee proper display of the desired glyph but at least makes the intention of the encoder discoverable.

At present the Unicode Standard does not offer detailed specifications for the encoding of glyph variations.
These Guidelines do give some recommendations; some discussion of related matters is given in Chapter 18
Transcription of Primary Sources, and Chapter 25 Representation of non-standard Characters and Glyphs
offers some features for the definition of variant glyphs.

vi.2.4 Entry of characters.

Text characters may be entered into a document using any of three methods, in any convenient combination.
First, where suitable input facilities make this possible, the characters concerned may be entered directly into
the document, either by normal keystrokes or by the use of one of the Input Method Editors (IMEs) commonly
used for the entry of ideographic characters. This is most likely to be convenient where the display used for
text entry and/or the printer used to produce output for proofreading purposes is capable of rendering the
characters concerned using correct and readily identifiable glyphs. Where such easily checkable rendering is
not available, or where there is no suitable method of inputting certain characters directly, they may be input
by one of two possible forms of indirect notation or ‘reference’.

The first form of reference is a Numeric Character Reference (NCR), which takes the general form &#D; where
D is an integer representing the code point of the character in base 10, or &#xH;, where H is the code point
in hexadecimal notation. This has the advantage that no declaration of what this notation means is required
anywhere in the document instance or its associated schema. Every XML processor is capable of recognising
NCRs and replacing them with the required code point value without needing access to any additional data.
The disadvantage of NCRs as a means of entering, representing and proofing character data is that most human
beings find them anything but ‘readable’ and it is all too easy for the wrong character to be entered in error and
retained undetected.

The second form of reference is a Character Entity Reference (though, as explained below, this should not
be taken to imply that such entities constitute a ‘type’ that could be distinctively recognised by a processing
system). Character entity references can (and indeed should) have names whose significance is apparent to
humans, but each and every entity name has to be associated with its replacement (which as explained below
should be a character value, possibly in the form of a NCR) via a formal declaration in the document's internal
or external subset. For a large number of characters defined by Unicode and commonly used in documents,
there are ISO entity sets declaring mnemonic names which should be used wherever feasible: XML compatible
character entity declarations using ISO names and suitable for inclusion into the subset are available on the
TEI web sites.

Where characters are not defined in Unicode and so have to be assigned both a local code point and a local
entity name of the project's choosing (see Non Unicode characters in XML documents below) it is highly desirable
to follow the same nomenclature principles as ISO and to emulate the practice in the ISO character entity
declarations of appending a string giving the character a unique descriptive name as a comment to the actual

xlix

vi. Languages and Character Sets

entity declaration. In addition, where different groups or projects are working on texts with geographical,
historical, linguistic or other similarities that give rise to common issues of character encoding, it is highly
advisable in the interests of consistency that they should consult one another when devising entity names.
The TEI mailing list may provide a suitable first point of contact for such consultations. Further advice on the
matter of locally-defined characters is contained in Chapter 25 Representation of non-standard Characters and

Glyphs.

vi.2.5 Output of characters

Rendering of the encoded text is a complicated process that depends largely on the purpose, external require-
ments, local equipment and so forth, it is thus outside the scope of coverage for these Guidelines.

It might however nevertheless be helpful to put some of the terminology used for the rendering process in
the context of the discussion of this chapter. As was mentioned above, Unicode encodes abstract characters,
not specific glyphs. For any process that makes characters visible, however, concrete, specifically designed
glyph shapes have to be used. For a printing process, for example, these shapes describe exactly at which point
ink has to be put on the paper and which areas have to be left blank. If we want to print a character from the
Latin script, besides the selection of the overall glyph shape, this process also requires that a specific weight of
the font has been selected, a specific size and to what degree the shape should be slanted. Beyond individual
characters, the overall typesetting process also follows specific rules of how to calculate the distance between
characters, how much whitespace occurs between words, at which points line breaks might occur and so forth.

If we concern ourselves only with the rendering process of the characters themselves, leaving out all these
other parameters, we will realize that of all the information required for this process, only a small amount
will be drawn from the encoded text itself. This information is the code point used to encode the character in
the document. With this information, the font selected for printing will be queried to provide a glyph shape
for this character. Some modern font formats (e.g. OpenType) do implement a sophisticated mapping from
a code point to the glyph selected, which might take into account surrounding characters (to create ligatures
where necessary) and the language or even area this character is printed for to accomodate different typesetting
traditions and differences in the usage of glyphs.

A TEI document might provide some of the information that is required for this process for example by
identifying the linguistic context with the xml:lang attribute. The selection of fonts and sizes is usually done
in a stylesheet, while the actual layout of a page is determined by the typesetting system used. Similarily, if a
document is rendered for publication on the Web, information of this kind can be shipped with the document
in a stylesheet.

vi.2.6 Unicode and XML

The devisers of the XML standard took the view that Unicode should be the only means of representing abstract
characters which conformant XML processors were obliged to support. That certainly does not preclude the
use of other character encoding schemes or character sets in documents which are to be handled by XML
processors, but it does mean that all the abstract characters which are encoded as characters (as distinct from
being represented indirectly via markup) in an XML document must either possess an assigned code point
within the public Unicode standard, or be assigned a code point devised by and specific to the local project,
taken from a reserved range set aside by the standard expressly for this purpose, the so-called Private Use Areas
or PUAs. For the vast majority of projects to which these Guidelines are applicable, the Unicode standard will
already offer code points for all the abstract characters their documents employ, and so the requirement that all
such characters should be resolvable by XML processors to Unicode code points will not involve any definition
or use of PUA code points. Indeed, such projects are not obliged by their choice of XML to use Unicode in their

5The World Wide Web Consortium provides recommendations for two standard stylesheet languages: either CSS or XSL could be used for this
purpose.

vi.2. Characters and Character Sets

documents. Provided they correctly declare at the requisite points any non-Unicode coded character set they
may use, ensure that all their XML processors support their declared encoding, and then consistently employ
that encoding in strict conformity with their declarations, they need not consciously concern themselves with
Unicode unless and until they feel it is appropriate to do so.

Non-Unicode character sets and XML processors

There are, however, strict limits to the way conformant XML processors handle documents whose character
set is not Unicode, and unless these limits are understood it is likely that projects not yet ready to commit to
Unicode across the board will run into unexpected and baftling problems as they attempt to operate with their
legacy character encodings. First, it must be repeated that nothing in the XML standard requires conformant
processors to handle non-Unicode documents. But even if there were any actual processors which on that
basis refused to process non-Unicode documents, that would not limit their usefulness as severely as might
at first appear. The reason is that there is a way of internally representing Unicode code points (explained
turther Encoding errors related to UTF-8 below) where there is no detectable difference between a document
which is actually encoded in ASCII employing only 7-bit values and one which is encoded in Unicode but
which happens to contain only the abstract characters encompassed by the 7-bit ASCII standard. And the
XML standard specifies that this way of representing Unicode is the one which processors must assume as
the default for any document that does not explicitly declare an encoding. At a stroke, this provision ensures
that all pure 7-bit ASCII encoded documents can be processed without further ado by all conformant XML
processors. Add to this the provision, also within the XML standard, that allows any Unicode code point to
be indirectly specified using only 7-bit ASCII characters via a Numeric Character Reference (NCR), and the
upshot is that all documents in non-Unicode encodings which can be pre-processed to rewrite any characters
outside the 7-bit ASCII range as Unicode code points in NCR notation (a simple batch procedure for which
software is readily available) can be handled even by processors which have no inbuilt support for any encoding
other than Unicode.

In fact, every XML processor so far released has implemented methods, specified in the standard though
not mandatory, which allow the processing of documents in at least some non-Unicode character sets. Such
processors include in their documentation a statement of the non-Unicode encodings they support, and the
use of such an encoding must be declared to the processor in the correct way.

To avoid confusion when taking advantage of such encoding support, it is first of all essential to grasp that
an encoding declaration in an XML document is indeed simply a declaration: it is not an incantation that
magically converts the document that follows into the encoding concerned. It is a common error to think
that simply declaring a document's encoding to be, say ISO-8859-1 (or for that matter UTF-8 or UTF-16, the
representations of Unicode for which support is mandatory) is sufficient to ‘make it so. Such a declaration
is useless unless the document that follows actually is encoded strictly in conformance with the declaration.
Some of the circumstances in which that may not in fact be the case are outlined in vi.2.9 Issues arising from
the internal representations of Unicode below. Secondly, an encoding declaration does not somehow switch an
XML processor into a mode where it works entirely in the declared encoding for as long as the declaration is
in scope. On the contrary, all it does is instruct the processor to pass its input through a filter that immediately
converts all the code points in the declared encoding into their Unicode counterparts; from that point onwards
the document as seen by all subsequent stages of processing is actually in Unicode, even though that may not
be apparent to the user. Thirdly, this invariable internal conversion has a crucial consequence: the fact that a
processor can successfully accept a document in a non-Unicode encoding does not mean that it will necessarily
convert any output it may produce back into the declared input encoding. Internally, the document has been
converted to and processed in Unicode, and there is nothing in the XML standard that requires the reverse
conversion to be performed at the output stage. Most processors go beyond the standard by offering a facility
to output in various encodings: but whether it is available and how to use it must be ascertained from the
processor's documentation. Should it be unavailable or unreliable, the output may need to be post-processed

li

vi. Languages and Character Sets

through a character convertor to restore the original encoding, and again such software is freely available and
easy to use.

Non Unicode characters in XML documents

In the cases considered in the preceding section, there was a suitable Unicode code point corresponding to
each abstract character contained in the non-Unicode character set of the input document. In such instances,
the mandatory internal conversion to Unicode carried out by the processor can be more or less transparent to
a user who wishes to continue to work with a non-Unicode character set. Things become rather different when
the non-Unicode character set contains abstract characters for which there is no code point in the Unicode
standard, or when a project that is attempting to work in Unicode throughout finds that it needs to represent
abstract characters not currently provided for in the Unicode standard. Here, a significant difference between
SGML and XML emerges in a rather troublesome way.

Following their agenda to devise a subset of SGML that would be significantly easier to implement, the
authors of the XML specification decided that one particular type of entity available in SGML, known as an
internal SDATA entity, should not be carried over into XML. It would be idle to question that decision here,
but its consequences for the handling of abstract characters for which there is no Unicode definition were
significant.

The procedures recommended in earlier versions of these Guidelines for encoding, processing and exchang-
ing what we might call locally defined abstract characters were reliant on the availability of entities declared as
of type SDATA, but that type is not supported in XML, and there is therefore no ready equivalent for XML-
based projects to the recommendations previously offered.® Entities in XML are really only of two basic types,
parsed and unparsed. Unparsed entities are of no relevance here. References to parsed entities in an XML
document result in only one kind of behaviour: when they appear in the parser's input stream, the parser
expects to be able to resolve them by locating a declaration in the document's internal or external subset which
maps the entity name to its replacement text. The parser then inserts that replacement text into the document
in place of the entity reference, which is discarded without trace. The act of replacement is not notified to the
application, except where it fails because the entity is undeclared or the declaration is in some way defective
(in which case the parser signals a fatal error and stops.)

Though for explanatory convenience much XML-related documentation, including these Guidelines, refers
specifically to Character Entities and Character Entity References, a character entity in XML is not a distinct
‘type’ in the sense that ‘type’ is understood in Computer Science terminology, for example when referring
to the type of an attribute. Hence there is no way in which editing or other software can check that the
replacement to be inserted is indeed a single character or its equivalent rather than an arbitrary chunk of text,
possibly including markup. A character entity is simply a general entity whose replacement text happens to
be declared as a character value or a NCR representing that value. This has two important consequences if it
is proposed to use such an entity reference to stand for a character that has no Unicode equivalent. First, the
entity name reference will disappear at an early stage in the parse and be replaced by the declared value of the
entity, so that no processing which requires access in the parsed document to the entity reference as originally
entered is possible. Secondly, if a character entity is to be used as a true equivalent to a normal character,
and consequently be employed at all points in a document where a single character could legitimately occur
(apart from in element and attribute names, where no references of any kind are allowed) then it is essential
that its replacement value indeed be pure character data. If the replacement value of the entity were to contain
any markup, or a processing instruction, there would be many places in a document where simple character
data would be legitimate, but where the substitution of markup or some other replacement could cause the

®In essence, when an SGML parser encounters a reference to an entity of type SDATA, it supplies to the application which it is servicing the name
of that entity, as found in the document, plus a pointer to a location somewhere on the local system, and what is present at that location may in turn
allow or instruct the application to do one of a number of things, including looking up the entity name in a table and deriving information about the
referenced entity which can trigger specific behaviours in the application appropriate to the processing of that abstract character. There is however no
way to make an XML parser do anything of the kind in response to an entity reference.

lii

vi.2. Characters and Character Sets

document to become invalid or malformed. Taken together, these considerations mean that the transparent
use of a CER to stand for a non-Unicode character in an XML document is simply not possible.

vi.2.7 Special aspects of Unicode character definitions
Compeatibility characters

The principles of Unicode are judiciously tempered with pragmatism. This means, among other things, that the
actual repertoire of characters which the standard encodes, especially those parts dating from its earlier days,
include a number of items which on a strict interpretation of the Unicode Consortium's theoretical approach
should not have been regarded as abstract characters in their own right. Some of these characters are grouped
together into a code-point regions assigned to compatibility characters. Ligatures are a case in point. Ligatures
(.e.g. the joining of adjacent lowercase letters ‘s’ and ¢ or f” and i’ in Latin scripts, whether produced by
a scribal practice of not lifting the pen between strokes or dictated by the aesthetics of a type design) are
representational features with no added semantic value beyond that of the two letters they unite (though for
historians of typography their presence and form in a given edition may be of scholarly significance). However,
by the time the Unicode standard was first being debated, it had become common practice to include single
glyphs representing the more common ligatures in the repertoires of some typesetting devices and high-end
printers, and for the coded character sets built into those devices to use a single code point for such glyphs,
even though they represent two distinct abstract characters. So as to increase the acceptance of Unicode among
the makers and users of such devices, it was agreed that some such pseudo-characters should be incorporated
into the standard. Nevertheless, if a project requires the presence of such ligatured forms to be encoded, this
should normally be done via markup, not by the use of a compatibility character. That way, the presence
of the ligature can still be identified (and if desired, rendered visually) where appropriate, but indexing and
retrieval software will treat the code points in the document as a simple sequential occurrence of the two
constituent characters concerned and so correctly align their semantics with non-ligatured equivalents. Such
ligatures should not be confused with digraphs (usually) indicating diphthongs, as in the French word "cceur”.
Digraphs are atomic orthographic units representing abstract characters in their own right, not purely glyphic
amalgamations, and indexing and retrieval software must treat them as such. Where a digraph occurs in a
source text, it should normally be encoded using the appropriate code point for the single abstract character
which it indeed represents, either by direct entry of the character concerned of through the appropriate CER
or NCR.

Precomposed and combining characters and normalization

The treatment of characters with diacritical marks within Unicode shows a similar combination of rigour
and pragmatism. It is obvious enough that it would be feasible to represent many characters with diacritical
marks in Latin and some other scripts by a sequence of code points, where one code point designated the base
character and the remainder represented one or more diacritical marks that were to be combined with the base
character to produce an appropriate glyphic rendering of the abstract character concerned. From its earliest
phase, the Unicode Consortium espoused this view in theory but was prepared in practice to compromise
by assigning single code points to precomposed characters which were already commonly assigned a single
distinctive code point in existing encoding schemes. This means, however, that for quite a large number of
commonly-occurring abstract characters, Unicode has two different, but logically and semantically equivalent
encodings: a precomposed single code point, and a code point sequence of a base character plus one or more
combining diacritics. Scripts more recently added to Unicode no longer exhibit this code-point duplication
(in current practice no new precomposed characters are defined where the use of combining characters is
possible) but this does nothing to remove the problem caused by the duplications permanently embodied in
older strata of the character set. Together with essentially analogous issues arising from the encoding of certain
East Asian ideographs, this duplication gives rise to the need to practice normalization of Unicode documents.
Normalization is the process of ensuring that a given abstract character is represented in one way only in a given

liii

vi. Languages and Character Sets

Unicode document or document collection. The Unicode Consortium provides four standard normalization
forms, of which the Normalization Form C (NFC) seems to be most appropriate for text encoding projects.
The World Wide Web Consortium has produced a document entitled Character Model for the World Wide
Web 1.07, which among other things discusses normalization issues and outlines some relevant principles. An
authoritative reference is Unicode Standard Annex #15 Unicode Normalization Forms®. Individual projects will
have to decide how far their decisions on normalization need be influenced by the fact that at present, by no
means all hardware or software can correctly render (or even consistently identify) abstract characters encoded
using combining symbols. It should be noted however, that normalization as discussed in the documents above
does not cover the problems mentioned above with East-Asian characters, except for issues connected with
composed characters in Hangul.

Itis important that every Unicode-based project should agree on, consistently implement and fully document
a comprehensive and coherent normalization practice. As well as ensuring data integrity within a given
project, a consistently implemented and properly documented normalization policy is essential for successful
document interchange.

Character semantics

In addition to the Universal Character Set itself, the Unicode Consortium maintains a database of additional
character semantics®. This includes names for each character code point and normative properties for it.
Character properties, as given in this database, determine the semantics and thus the intended use of a code
point or character. It also contains information that might be needed for correctly processing this character for
different purposes. This database is an important reference in determining which Unicode code point to use
to encode a certain character.

In addition to the printed documentation and lists made available by the Unicode consortium, the informa-
tion it contains may also be accessed by a number of search systems over the Web (e.g. http://www.eki.ee/
letter/). Examples of character properties included in the database include case, numeric value, direction-
ality, and, where applicable status as a ‘compatibility character’!?. Where a project undertakes local definition
of characters with code point in the PUA, it is desirable that any relevant additional information about the
characters concerned should be recorded in an analogous way, as further discussed under 5. Representation of
Non-standard Characters and Glyphs.

vi.2.8 Character entities in non-validated documents

An important difference between SGML and XML is that the latter allows for the processing of non-validated
documents. Since validity and validation are central TEI concerns, it is unlikely that documents prepared
according to these Guidelines will ever be designed or implemented as merely well-formed in the XML sense.
However in the domain of XML technologies, even where a document invokes a DTD or schema, it is not
always necessarily the case that an XML processor will perform a full validation of it. XSLT transformation
is a common case in point. By the workflow stage at which a document is handed oft to an XSLT process
for transformation, it is likely that its associated DTD or schema will already have fulfilled its role of integrity
assurance and quality control, and so it may be undesirable to add validation to the processing overhead. For
this reason, most XSLT processors do not attempt validation by default, even if a DTD or schema is declared
and accessible. This can, however, create a problem where parsed entities, (and character entities in particular
in the present context) are referenced. A validating parser reads all entity declarations from the DTD (including
those for character entities) in the initial phase of processing, so that they can be resolved as and when required.
However, where no validation takes place, it cannot automatically be assumed that the parser will be able to

7 Available at http: //www.w3.0rg/TR/charmod,

8available at/http: //www.unicode.org/reports/tris/

Ihttp://www.unicode.org/ucd/
10For further details, see The Unicode Character Property Model (Unicode Technical Report #23), athttp://www.unicode.org/reports/tr23/.

liv

http://www.eki.ee/letter/
http://www.eki.ee/letter/
http://www.w3.org/TR/charmod
http://www.unicode.org/reports/tr15/
http://www.unicode.org/ucd/
http://www.unicode.org/reports/tr23/

vi.2. Characters and Character Sets

resolve such entities in all circumstances. The XML standard requires a non-validating parser to read and
act on entity declarations only if they are located within the document's internal subset (which does not, of
course, mean that the entity declarations have to be manually merged into the document instance in advance
of processing: character entity sets, for instance, count as being in the internal subset if they are placed there
via a parameter entity, as is normal TEI practice). Some parsers when in non-validating mode will also access
entity declarations in the external subset, but this behaviour is not mandated by the standard and should not
be relied upon. Provided these facts are borne in mind, the presence of character entities in a document when
parser validation is switched off should not cause any difficulties.

vi.2.9 Issues arising from the internal representations of Unicode

In theory it should not be necessary for encoders to have any knowledge of the various ways in which Unicode
code points can be represented internally within a document or in the memory of a processing system, but
experience shows that problems frequently arise in this area because of mistaken practice or defective software,
and in order to recognise the resulting symptoms and correct their causes an outline knowledge of certain
aspects of Unicode internal representation is desirable.

Encoding errors related to UTF-8

The code points assigned by Unicode 3.0 and later are notionally 32-bit integers, and the most straightforward
way to represent each such integer in computer storage would be to use 4 eight-bit bytes. However, many of the
code points for characters most commonly used in Latin scripts can be represented in one byte only and the
vast majority of the remainder which are in common use (including those assigned from the most frequently
used PUA range) can be expressed in two bytes alone. This accounts for the use of UTF-8 and UTF-16 and
their special place in the XML standard. UTF-8 and UTE-16 are ways of representing 32-bit code points in an
economical way.

UTF-8 is a variable length-encoding: the more significant bits there are in the underlying code point (or in
everyday terminology the bigger the number used to represent the character), the more bytes UTF-8 uses to
encode it. What makes UTF-8 particularly attractive for representing Latin scripts, explaining its status as the
default encoding in XML documents, is that all code points that can be expressed in seven or fewer bits (the
127 values in the original ASCII character set) are also encoded as the same seven or fewer bits (and therefore
in a single byte) in UTF-8. That is why a document which is actually encoded in pure 7-bit ASCII can be fed
to an XML processor without alteration and without its encoding being explicitly declared: the processor will
regard it as being in the UTF-8 representation of Unicode and be able to handle it correctly on that basis.

However, even within the domain of Latin-based scripts, some projects have documents which use characters
from 8 bit extensions to ASCII, e.g. those in the ISO-8859-n series of encodings, and the way characters which
under ISO-8859-n use all eight bits are encoded in UTF-8 is significantly different, giving rise to puzzling errors.
Abstract characters that have a single byte code point where the highest bit is set (that is, they have a decimal
numeric representation between 129 and 255) are encoded in ISO-8859-n as a singlebyte with the same value as
the code point. But in UTF-8 code-point values inside that range are expressed as a two byte sequence. That is
to say, the abstract character in question is no longer represented in the file or in memory by the same number
as its code-point value: it is transformed (hence the T in UTF) into a sequence of two different numbers. Now
as a side-effect of the way such UTF-8 sequences are derived from the underlying code-point value, many of
the single-byte eight-bit values employed in ISO-8859-n encodings are illegal in UTF-8.

This complicated situation has a simple consequence which can cause great bewilderment. XML processors
will effortlessly handle character data in pure 7-bit ASCII without that encoding needing to be declared to the
parser, and will similarly accept documents encoded in an undeclared ISO-8859-n encoding if they happen to
use no characters outside the strict ASCII subset of the ISO character sets; but the parse will immediately fail
if an eight-bit character from an ISO-8859-n set is encountered in the input stream, unless the document's
encoding has been explicitly and correctly declared. Explicitly declaring the encoding ought to solve the

Iv

vi. Languages and Character Sets

problem, and if the file is correctly encoded throughout, it will do so. But since text editors and word processors
are currently acquiring different degrees of Unicode support at different rates, projects are likely to find that they
have to deal with some files encoded in UTF-8 along with others in, say, ISO-8859-1. Such encoding differences
may go unnoticed, especially if the proportion of characters where the internal encodings are distinguishable
is relatively small (for example in a long English text with a smattering of French words). If in the process of
document preparation two such files have been merged, or intermixed via ‘cut and paste’ techniques, it is all too
possible that the internal encodings of the resulting files will have become mixed as well. Thanks to misplaced
notions of ‘user friendliness’ some current editing software silently corrects such miscodings as it displays the
text, so that they remain hidden until the XML parser terminates with a fatal ‘invalid character’ error.

Where erroneously mixed encodings are the source of such an error, altering the encoding declaration will
not solve the problem, though it may obfuscate it. Eight-bit character codes in a file declared as UTF-8 will
always stop the parser. More insidiously, UTF-8 sequences in a file declared as ISO-8859-1 will not halt the
parse, but will cause data corruption, because the parser will silently but erroneously convert each byte in
every UTF-8 sequence into a spurious separate character, introducing semantic errors which may not become
apparent until much later in the processing chain.

In projects that routinely handle documents in non-Latin scripts, everyone is well aware of the need to ensure
correct and consistent encoding, so in such places mixed encoding problems seldom arise, and when they do
are readily identified and remedied. Real confusion tends to arise, however, in projects which have a low
awareness of the issues because they employ predominantly unaccented Latin characters, with only thinly-
distributed instances of accented letters, or other ‘special characters’ where the internal representation under
ISO-8859-n and UTF-8 are different (such as the copyright symbol, or, a frequent troublemaker where eventual
HTML output is envisaged, the ‘non-breaking space’). Even, or especially, if such projects view themselves as
concerned only with English documents, the close relationship between XML and Unicode means they will
need to acquire an understanding of these encoding issues and develop procedures which assure consistency
and integrity of encoding and its correct declaration, including the use of appropriate software for transcoding
and verification.

Encoding errors related to UTF-16

The advantages of UTF-8 as an internal representation of Unicode code points outlined above do not obtain
where documents are in scripts other than Latin, Cyrillic or Hebrew. Where characters with code points
in the sixteen-bit range (two-byte) predominate, UTF-8 is inappropriate, because it requires three or more
bytes to represent each abstract character. Here the preferred representation of Unicode (which all XML-
conformant parsers must support) is UTF-16, where each code point corresponding to an abstract character
is represented in two eight-bit bytes'!. This encoding presents a different hazard, especially while support
for Unicode in editing software is relatively uneven and immature. Because the code points are represented
as sixteen-bit integers stored (in most popular computers) in two separate bytes, the order in which those
bytes are stored becomes important. This is dependent on the underlying hardware. In the realm of desktop
computing, Macintosh machines, for example, store (on disk as well as in memory) byte pairs representing
16-bit integers with the higher-value byte first, whereas PCs using Intel processors store the bytes in the reverse
order (this is often referred to with Swiftian nomenclature as big-endian versus little-endian byte order). This
means that if a semantically identical plain text file encoded in UTF-16 is prepared on a Macintosh and on
a PC, and the two files are then saved to disk, each byte pair in one file will be in the reverse order from the
corresponding byte pair in the other file. To avoid the obvious incompatibility problems, the XML standard
requires that all documents whose declared encoding is UTF-16 must begin with a special pseudo-character
which is not itself part of the document, but merely a Byte Order Marker (BOM) from which the processor
can determine the byte order of the document that follows. Now the insertion of a correct BOM and the

The use of ‘surrogate’ values to represent code points beyond the 16-bit range is passed over here, since it adds a complication that does not affect
the key points at issue

Ivi

vi.2. Characters and Character Sets

consistent maintenance of the byte order throughout the file ought to be taken care of transparently by software,
but experience, especially from environments where work is distributed across big-endian and little-endian
hardware, shows that this cannot always be taken for granted in the current state of software development.
As with mixed encoding problems involving UTEF-8, inconsistent byte-order in UTF-16 files seems to be the
result of merging or cutting and pasting between files using software which does not correctly enforce byte
order integrity, and out of misconceived ‘user friendliness’ which conceals byte-order inconsistencies from the
user. Once more, the result can be files which look correct in an editor, but which the XML parser either rejects
outright or silently passes on in a seriously garbled form. Again, to avoid the consequent errors, projects need
to cultivate an informed awareness of relevant encoding issues and devise policies to avoid them in the first
place or detect them at an early stage.

Ivii

vi. Languages and Character Sets

lviii

Chapter 1

The TEI Infrastructure

This chapter describes the infrastructure for the encoding scheme defined by these Guidelines. It introduces
the conceptual framework within which the following chapters are to be understood, and the means by which
that conceptual framework is implemented. It assumes some familiarity with XML and XML schemas (see
chapter v A Gentle Introduction to XML) but is intended to be accessible to any user of these Guidelines. Other
chapters supply further technical details, in particular chapter 22. Documentation Elements which describes
the XML schema used to express the Guidelines themselves, and chapter 23. Using the TEI which combines a
discussion of modification and conformance issues with a description of the intended behaviour of an ODD
processor; these chapters should be read by anyone intending to implement a new TEI-based system.

The TEI encoding scheme consists of a number of modules, each of which declares particular XML elements
and their attributes. Part of an element's declaration includes its assignment to one or more element classes.
Another part defines its possible content and atttributes with reference to these classes. This indirection gives
the TEI system much of its strength and its flexibility. Elements may be combined more or less freely to form
a schema appropriate to a particular set of requirements. It is also easy to add new elements which reference
existing classes or elements to a schema, as it is to exclude some of the elements provided by any module
included in a schema.

In principle, a TEI schema may be constructed using any combination of modules. However, certain TEI
modules are of particular importance, and should always be included in all but exceptional circumstances: the
module tei described in the present chapter is of this kind because it defines classes, macros, and datatypes
which are used by all other modules. The core module, defined in chapter 3. Elements Available in All TEI
Documents contains declarations for elements and attributes which are likely to be needed in almost any kind
of document, and is therefore recommended for global use. The header module defined in chapter 2. The
TEI Header provides declarations for the metadata elements and attributes constituting the TEI Header, a
component which is required for TEI conformance, while the textstructure module defined in chapter 4. Default
Text Structure declares basic structural elements needed for the encoding of most book-like objects. Most
schemas will therefore need to include these four modules.

The specification for a TEI schema is itself a TEI document, using elements from the module described
in chapter 22. Documentation Elements: we refer to such a document informally as an ODD document, from
the design goal originally formulated for the system: ‘One Document Does it all’ Stylesheets for maintaining
and processing ODD documents are maintained by the TEIL, and these Guidelines are also maintained as such a
document. As further discussed in 23.4. Implementation of an ODD System, an ODD document can be processed
to generate a schema expressed using any of the three schema languages currently in wide use: the XML DTD
language, the ISO RELAX NG language, or the W3C Schema language, as well as to generate documentation
such as the Guidelines and their associated web site.

The bulk of this chapter describes the TEI infrastructure module itself. Although it may be skipped at a first

1. The TEI Infrastructure

1.1

reading, an understanding of the topics addressed here is essential for anyone planning to take full advantage
of the TEI customization techniques described in chapter 23.2. Personalization and Customization.

The chapter begins by briefly characterizing each of the modules available in the TEI scheme. Section 1.2.
Defining a TEI Schema describes in general terms the method of constructing a TEI schema in a specific schema
language such as XML DTD language, RELAX NG, or W3C Schema.

The next and largest part of the chapter introduces the attribute and element classes used to define groups of
elements and their characteristics (section 1.3. The TEI Class System).

Finally, section 1.4. Macros introduces the concept of macros, which are used to express some commonly used
content models, and lists the datatypes used to constrain the range of legal values for TEI attributes (section
1.4.2. Datatype Macros).

TEI Modules

These Guidelines define several hundred elements and attributes for marking up documents of any kind. Each
definition has the following components:

« aprose description

o a formal declaration, expressed using a special-purpose XML vocabulary defined by these Guidelines in
combination with elements taken from the ISO schema language RELAX NG

+ usage examples

Each chapter of the Guidelines presents a group of related elements, and also defines a corresponding set of
declarations, which we call a module. All the definitions are collected together in the reference sections provided
as an appendix. Formal declarations for a given chapter are collected together within the corresponding
module. For convenience, each element is assigned to a single module, typically for use in some specific
application area, or to support a particular kind of usage. A module is thus simply a convenient way of grouping
together a number of associated element declarations. In the simple case, a TEI schema is made by combining
together a small number of modules, as further described in section |1.2. Defining a TEI Schema below.

The following table lists the modules defined by the current release of the Guidelines:

Module name

Formal public identifier

Where defined

analysis Analysis and Interpretation 17. Simple Analytic Mechanisms

certainty Certainty and Uncertainty 21. Certainty, Precision, and
Responsibility

core Common Core 3. Elements Available in All TEI
Documents

corpus Metadata for Language Corpora 15. Language Corpora

dictionaries Print Dictionaries 9. Dictionaries

drama Performance Texts 7. Performance Texts

figures Tables, Formulae, Figures 14. Tables, Formulee, and Graphics

gaiji Character and Glyph Documentation 5. Representation of Non-standard
Characters and Glyphs

header Common Metadata 2. The TEI Header

iso-fs Feature Structures 18. Feature Structures

linking Linking, Segmentation, and Alignment 16. Linking, Segmentation, and
Alignment

msdescription Manuscript Description 10. Manuscript Description

namesdates Names, Dates, People, and Places 13. Names, Dates, People, and Places

nets Graphs, Networks, and Trees 19. Graphs, Networks, and Trees

spoken Transcribed Speech 8. Transcriptions of Speech

1.2. Defining a TEI Schema

1.2

1.2.1

tagdocs Documentation Elements 22. Documentation Elements

tei TEI Infrastructure 1. The TEI Infrastructure

textcrit Text Criticism 12. Critical Apparatus

textstructure Default Text Structure 4. Default Text Structure

transcr Transcription of Primary Sources 11. Representation of Primary Sources
verse Verse 6. Verse

For each module listed above, the corresponding chapter gives a full description of the classes, elements, and
macros which it makes available when it is included in a schema. Other chapters of these Guidelines explore
other aspects of using the TEI scheme.

Defining a TEl Schema

To determine that an XML document is valid (as opposed to merely well-formed), its structure must be checked
against a schema, as discussed in chapter v A Gentle Introduction to XML. For a valid TEI document, this schema
must be a conformant TEI schema, as further defined in chapter 23.3. Conformance. Local systems may allow
their schema to be implicit, but for interchange purposes the schema associated with a document must be made
explicit. The method of doing this recommended by these Guidelines is to provide explicitly or by reference a
TEI schema specification against which the document may be validated.

A TEI-conformant schema is a specific combination of TEI modules, possibly also including additional
declarations that modify the element and attribute declarations contained by each module, for example to
suppress or rename some elements. The TEI provides an application-independent way of specifying a TEI
schema by means of the <schemaSpec> element defined in chapter 22. Documentation Elements. The same
system may also be used to specify a schema which extends the TEI by adding new elements explicitly, or by
reference to other XML vocabularies. In either case, the specification may be processed to generate a formal
schema, expressed in a variety of specific schema languages, such as XML DTD language, RELAX NG, or W3C
Schema. These output schemas can then be used by an XML processor such as a validator or editor to validate
or otherwise process documents. Further information about the processing of a TEI formal specification is
given in chapter 23. Using the TEI

A Simple Customization

The simplest customization of the TEI scheme combines just the four recommended modules mentioned above.
In ODD format, this schema specification takes this form:

<schemaSpec ident="TEI-minimal" start="TEI">
<moduleRef key="tei"/>
<moduleRef key="header"/>
<moduleRef key="core"/>
<moduleRef key="textstructure"/>
</schemaSpec>

This schema specification contains references to each of four modules, identified by the key attribute on
the <moduleRef> element. The schema specification itself is also given an identifier (TEl-minimal). An ODD
processor will generate an appropriate schema from this set of declarations, expressed using the XML DTD
language, the ISO RELAX NG language, the W3C Schema language, or in principle any other adequately
powerful schema language. The resulting schema may then be associated with the document instance by
one of a number of different mechanisms, as further described in chapter v A Gentle Introduction to XML.
The start point (or root element) of document instances to be validated against the schema is specified by
means of the start attribute. Further information about the processing of an ODD specification is given in
23.4. Implementation of an ODD System.

1. The TEI Infrastructure

1.2.2 A Larger Customization

These Guidelines introduce each of the modules making up the TEI scheme one by one, and therefore, for

clarity of exposition, each chapter focusses on elements drawn from a single module. In reality, of course,

the markup of a text will draw on elements taken from many different modules, partly because texts are

heterogenous objects, and partly because encoders have different goals. Some examples of this heterogeneity

include:

« atext may be a collection of other texts of different types: for example, an anthology of prose, verse, and
drama;

« atext may contain other smaller, embedded texts: for example, a poem or song included in a prose narrative;

« some sections of a text may be written in one form, and others in a different form: for example, a novel where
some chapters are in prose, others take the form of dictionary entries, and still others the form of scenes in
a play;

« an encoded text may include detailed analytic annotation, for example of rhetorical or linguistic features;

+ an encoded text may combine a literal transcription with a diplomatic edition of the same or different
sources;

o the description of a text may require additional specialised metadata elements, for example when describing
manuscript material in detail.

The TEI provides mechanisms to support all of these and many other use cases. The architecture permits
elements and attributes from any combination of modules to co-exist within a single schema. Within particular
modules, elements and attributes are provided to support differing views of the ‘granularity’ of a text, for
example:

« a definition of a corpus or collection as a series of <TEI> documents, sharing a common TEI header (see
chapter 15. Language Corpora)

+ a definition of composite texts which combine optional front- and back-matter with a group of collected
texts, themselves possibly composite (see section 4.3.1. Grouped Texts)

o an element for the representation of embedded texts, where one narrative appears to float’ within another
(see section 4.3.2. Floating Texts)

Subsequent chapters of these Guidelines describe in detail markup constructs appropriate for these and many
other possible features of interest. The markup constructs can be combined as needed for any given set of
applications or project.

For example, a project aiming to produce an ambitious digital edition of a collection of manuscript materials,
to include detailed metadata about each source, digital images of the content, along with a detailed transcription
of each source, and a supporting biographical and geographical database might need a schema combining
several modules, as follows:

<schemaSpec ident="TEI-PROJECT" start="TEI">
<moduleRef key="tei"/>
<moduleRef key="header"/>
<moduleRef key="core"/>
<moduleRef key="textstructure"/>
<moduleRef key="msdescription"/>
<!-- manuscript description -->
<moduleRef key="transcr"/>

<!-- transcription of primary sources -->
<moduleRef key="figures"/>
<!-- figures and tables -->

1.3. The TEI Class System

1.3

1.3.1

<moduleRef key="namesdates"/>
<!-- names, dates, people, and places -->
</schemaSpec>

Alternatively, a simpler schema might be used for a part of such a project: those preparing the transcriptions,
for example, might need only elements from the core, textstructure, and transcr modules, and might therefore
prefer to use a simpler schema such as that generated by the following:

<schemaSpec ident="TEI-TRANSCR" start="TEI">
<moduleRef key="tei"/>
<moduleRef key="core"/>
<moduleRef key="textstructure"/>
<moduleRef key="transcr"/>
</schemaSpec>

The TEI architecture also supports more detailed customization beyond the simple selection of modules.
A schema may suppress elements from a module, suppress some of their attributes, change their names, or
even add new elements and attributes. Detailed discussion of the kind of modification possible in this way
is provided in 23.2. Personalization and Customization and conformance rules relating to their application are
discussed in 23.3. Conformance. These facilities are available for any schema language (though some features
may not be available in all languages). The ODD language also makes it possible to combine TEI and non-TEI
modules into a single schema, provided that the non-TEI module is expressed using the RELAX NG schema
language (see further 22.6. Combining TEI and Non-TEI Modules).

The TEI Class System

The TEI scheme distinguishes about five hundred different elements. To aid comprehension, modularity, and
modification, the majority of these elements are formally classified in some way. Classes are used to express
two distinct kinds of commonality among elements. The elements of a class may share some set of attributes, or
they may appear in the same locations in a content model. A class is known as an attribute class if its members
share attributes, and as a model class if its members appear in the same locations. In either case, an element is
said to inherit properties from any classes of which it is a member.

Classes (and therefore elements which are members of those classes) may also inherit properties from other
classes. For example, supposing that class A is a member (or a subclass) of class B, any element which is a
member of class A will inherit not only the properties defined by class A, but also those defined by class B. In
such a situation, we also say that class B is a superclass of class A. The properties of a superclass are inherited by
all members of its subclasses.

A basic understanding of the classes into which the TEI scheme is organized is strongly recommended and
is essential for any successful customization of the system.

Attribute Classes

An attribute class groups together elements which share some set of common attributes. Attribute classes are
given names beginning att. and are usually adjectival. For example, the members of the class att.canonical
have in common a key and a ref attribute, both of which are inherited from their membership in the class
rather than individually defined for each element. These attributes are said to be defined by (or inherited
from) the att.canonical class. If another element were to be added to the TEI scheme for which these attributes
were considered useful, the simplest way to provide them would be to make the new element a member of the
att.canonical class. Note also that this method ensures that the attributes in question are always defined in the
same way, taking the same default values etc., no matter which element they are attached to.

1. The TEI Infrastructure

Some attribute classes are defined within the tei infrastructural module and are thus globally available. Other
attribute classes are specific to particular modules and thus defined in other chapters. Attributes defined by
such classes will not be available unless the module concerned is included in a schema.

The attributes provided by an attribute class are those specified by the class itself, either directly, or by
inheritance from another class. For example, the attribute class att.pointing.group provides attributes domains
and targFunc to all of its members. This class is however a subclass of the att.pointing class, from which its
members also inherit the attributes type and evaluate. Members of the class att.pointing will thus have these
two attributes, while members of the class att.pointing.group will have all four.

Note that some modules define superclasses of an existing infrastructural class. For example, the global
attribute class att.divLike makes attributes org, part, and sample available, while the att.metrical class, which
is specific to the verse module, provides attributes met, real, and rhyme. Because att.metrical is defined as a
superclass of att.divLike, all six of these attributes are available to elements; the declaration for att.metrical adds
its three attributes to the three already defined by att.divLike when the verse module is included in a schema. If,
however, this module is not included in a schema, then the att.divLike elements supplies only the three attributes
first mentioned.

Attributes specific to particular modules are documented along with the relevant module rather than in the
present chapter. One particular attribute class, known as att.global, is common to all modules, and is therefore
described in some detail in the next section. A full list of all attribute classes is given in Appendix B Attribute
Classes below.

1.3.1.1 Global Attributes
The following attributes are defined for every TEI element.

att.global provides attributes common to all elements in the TEI encoding scheme.

@xml:id (identifier) provides a unique identifier for the element bearing the attribute.

@n (number) gives a number (or other label) for an element, which is not necessarily unique
within the document.

@xml:lang (language) indicates the language of the element content using a ‘tag’ generated
according to BCP 47

@rend (rendition) indicates how the element in question was rendered or presented in the
source text.

@rendition points to a description of the rendering or presentation used for this element in the
source text.

@xml:base provides a base URI reference with which applications can resolve relative URI
references into absolute URI references.

These attributes are optionally available for any TEI element; none of them is required.

1.3.1.1.1 Element Identifiers and Labels

The value supplied for the xml:id attribute must be a legal name, as defined in the World Wide Web
Consortium's XML Recommendation. This means that it must begin with a letter, or the underscore character
(‘."), and contain no characters other than letters, digits, hyphens, underscores, full stops, and certain
combining and extension characters.!

In XML names (and thus the values of xml:id in an XML TEI document) uppercase and lowercase letters are
distinguished, and thus partTime and parttime are two distinctly different names, and could (though perhaps
unwisely) be used to denote two different element occurrences.

'The colon is also by default a valid name character; however, it has a specific purpose in XML (to indicate namespace prefixes), and may not
therefore be used in any other way within a name.

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.w3.org/TR/REC-xml

1.3. The TEI Class System

If two elements are given the same identifier, a validating XML parser will signal a syntax error. The following
example, therefore, is not valid:

<p

xml:id="PAGEl1"><g>What's it going to be then, eh?</qg></p>

<p xml:id="PAGE1">There was me, that is Alex, and my three droogs,
that is Pete, Georgie, and Dim, ... </p>

Source: [26]]

For a discussion of methods of providing unique identifiers for elements, see section 3.10.2. Creating New
Reference Systems.

The n attribute also provides an identifying name or number for an element, but in this case the information
need not be a legal xml:id value. Its value may be any string of characters; typically it is a number or other
similar enumerator or label. For example, the numbers given to the items of a numbered list may be recorded
with the n attribute; this would make it possible to record errors in the numeration of the original, as in this
list of chapters, transcribed from a faulty original in which the number 10 is used twice, and 11 is omitted:

<list type="ordered">
<item n="1">About These Guidelines</item>
<item n="2">A Gentle Introduction to SGML</item>
<item n="9">Verse</item>
<item n="10">Drama</item>
<item n="10">Spoken Materials </item>
<item n="12">Print Dictionaries</item>
</list>

The n attribute may also be used to record non-unique names associated with elements in a text, possibly
together with a unique identifier as in the following example:

<div type="Book" n="One" xml:id="TXT0101l">

<l-- ... -->

<div type="stanza" n="xlii">
<l-- ... -->

</div>
</div>

Source: [182]

As noted above there is no requirement to record a value for either the xml:id or the n attribute. Any XML
processor can identify the sequential position of one element within another in an XML document without
any additional tagging. An encoding in which each line of a long poem is explicitly labelled with its numerical
sequence such as the following

<l n="1">
<o >
</1>

<l n="2">
<o >
</1>

<l n="3">

<o >

1. The TEI Infrastructure

</1>
<l-- ... -->
<l n="100">
<l-- ... -->
</1>

is therefore probably redundant.
1.3.1.1.2 Language Indicators

The xml:lang attribute indicates the natural language and writing system applicable to the content of a given
element. If it is not specified, the value is inherited from that of the immediately enclosing element. As a rule,
therefore, it is simplest to specify the base language of the text on the <TEI> element, and allow most elements
to take the default value for xml:lang; the language of an element then need be explicitly specified only for
elements in languages other than the base language. For this reason, it is recommended practice to supply a
default value for the xml:lang attribute, either on the <TEI> root element, or on both the <teiHeader> and the
<text> element. The latter is appropriate in the not uncommon case where the text element in a TEI document
uses a different default language from that of the TEI Header attached to it. Other language shifts in the source
should be explicitly identified by use of the xml:lang attribute on an element at an appropriate level wherever
possible.

In the following example schematic, an English language TEI header is attached to an English language text:

<TEI xml:lang="eng">
<teiHeader>

<l-- ... -->
</teiHeader>
<text>

<l-- ... -->
</text>

</TEI>

The same effect would be obtained by specifying the default language for both header and text:

<TEI>
<teiHeader xml:lang="eng">
<l-- ... -->
</teiHeader>
<text xml:lang="eng">
<l-- ... -->
</text>
</TEI>

The latter approach is necessary in the case where the two differ: for example, where an English language
header is applied to a French text:

<TEI>
<teiHeader xml:lang="eng">
<l-- ... -->
</teiHeader>
<text xml:lang="fra">
<l-- ... -->
</text>
</TEI>

1.3. The TEI Class System

The same principle applies at any hierarchic level. In the following example, the default language of the text
is French, but one section of it is in German:

<TEI>
<teiHeader xml:lang="eng">
<l-- ... -->
</teiHeader>
<text xml:lang="fra">
<body>
<div>
<!-- chapter one is in French -->
</div>
<div xml:lang="deu">
<!-- chapter two is in German -->
</div>
<div>
<!-- chapter three is French -->
</div>
<l-- ... -->
</body>
</text>
</TEI>

Similarly, in the following example the xml:lang attribute on the <term> element allows us to record the
fact that the technical terms used are Latin rather than English; no xml:lang attribute is needed on the <q>
element, by contrast, because it is in the same language as its parent.

<p xml:lang="en">The constitution declares <g>that no bill of attainder
or <term xml:lang="la">ex post facto</term> law shall be passed.</q>
L </p>

Source: [|147]]

The values used for the xml:lang attribute must be constructed in a particular way, using values from standard
lists. See further vi.1 Language identification.

Additional information about a particular language may be supplied in the <language> element within the
header (see section 2.4.2. Language Usage).

1.3.1.1.3 Rendition Indicators

The rend attribute is used to give information about the physical presentation of the text in the source. In the
following example, it is used to indicate that both the emphasized word and the proper name are printed in
italics:

<p> ... Their motives <emph rend="italics">might</emph> be
pure and pious; but he was equally alarmed by his knowledge
of the ambitious <name rend="italics">Bohemond</name>, and
his ignorance of the Transalpine chiefs: ...</p>

Source: [189]]

If all or most <emph> and <name> elements are rendered in the text by italics, it will be more convenient
to register that fact in the TEI header once and for all (using the <rendition> element discussed below) and
specify a rend value only for any elements which deviate from the stated rendition.

1. The TEI Infrastructure

Although the contents of the rend attribute are free text, in any given project, encoders are advised to adopt
a standard vocabulary with which to describe typographic or manuscript rendition of the text.

The <rendition> element defined in 2.3.4. The Tagging Declaration may be used to hold such descriptions,
expressed in free text, or using a formal language. A <rendition> element can then be associated with any
element, either by default, or by means of the global rendition attribute. For example:

<!-- define italic style using CSS --><rendition xml:id="IT" scheme="css">font-style: italic</rendition>
<!-- set italic style as default for the emph and hi elements -->

<tagUsage gi="emph" render="#IT"/>

<tagUsage gi="hi" render="#IT"/>

<!-- indicate that a specific p element is also in italic style -->

<p rendition="#IT"/>

The rendition attribute always points to one or more <rendition> elements, each of which defines some
aspect of the rendering or appearance of the text in its original form. These details may be described using a
formal language, such as CSS (Lie and Bos (eds.) (1999)) or XSL-FO (Berglund (ed.) (2006)); in some other
formal language developed for a specific project; or informally in running prose. Although languages such as
CSS and XSL-FO are generally used to describe document output to screen or print, they nonetheless provide
formal and precise mechanisms for describing the appearance of many source documents, especially print
documents, but also many aspects of manuscript documents. For example, both CSS and XSL-FO provide
mechanisms for describing typefaces, weight, and styles; character and line spacing; and so on.

If both rendition and rend attributes are provided for a given element, the latter always takes precedence.
The rendition attribute is analogous to the X/HTML class attribute, which references style declarations in a
Cascading Style Sheet. The rend attribute is analogous to the XHTML or HTML style attribute, which provides
a mechanism for embedding inline rendition information at the point of use within a document. Note that,
in either case, the TEI attributes describe the rendition or appearance of the source document, not intended
output renditions, although often the two may be closely related.

1.3.2 Model Classes

As noted above, the members of a given TEI model class share the property that they can all appear in the same
location within a document. Wherever possible, the content model of a TEI element is expressed not directly
in terms of specific elements, but indirectly in terms of particular model classes. This makes content models
simpler and more consistent; it also makes them much easier to understand and to modify.

Like attribute classes, model classes may have subclasses or superclasses. Just as elements inherit from a class
the ability to appear in certain locations of a document (wherever the class can appear), so all members of a
subclass inherit the ability to appear wherever any superclass can appear. To some extent, the class system thus
provides a way of reducing the whole TEI galaxy of elements into a tidy hierarchy. This is however not entirely
the case.

In fact, the nature of a given class of elements can be considered along two dimensions: as noted, it defines a
set of places where the class members are permitted within the document hierarchys; it also implies a semantic
grouping of some kind. For example, the very large class of elements which can appear within a paragraph
comprises a number of other classes, all of which have the same structural property, but which differ in their
field of application. Some are related to highlighting, while others relate to names or places, and so on. In
some cases, the ‘set of places where class members are permitted’ is very constrained: it may just be within one
specific element, or one class of element, for example. In other cases, elements may be permitted to appear in
very many places, or in more than one such set of places.

These factors are reflected in the way that model classes are named. If a model class has a name containing
part, such as model.divPart or model.biblPart then it is primarily defined in terms of its structural location.

10

1.3. The TEI Class System

For example, those elements (or classes of element) which appear as content of a <div> constitute the
model.divPart class; those which appear as content of a <bibl> constitute the model.biblPart class. If, however,
a model class has a name containing like, such as model.biblLike or model.nameLike, the implication is that
its members all have some additional semantic property in common, for example containing a bibliographic
description, or containing some form of name, respectively. These semantically-motivated classes often provide
a useful way of dividing up large structurally-motivated classes: for example, the very general structural class
model.pPart.data (‘data elements that form part of a paragraph’) has four semantically-motivated member
classes (model.addressLike, model.dateLike, model.measureLike, and model.nameLike), the last of these being
itself a superclass with three members.

Although most classes are defined by the tei infrastructure module, a class cannot be populated unless some
other specific module is included in a schema, since element declarations are contained by modules. Classes are
not declared ‘top down;, but instead gain their members as a consequence of individual elements' declaration of
their membership. The same class may therefore contain different members, depending on which modules are
active. Consequently, the content model of a given element (being expressed in terms of model classes) may
differ depending on which modules are active.

Some classes contain only a single member, even when all modules are loaded. One reason for declaring such
a class is to make it easier for a customization to add new member elements in a specific place, particularly in
areas where the TEI does not make fully elaborated proposals. For example, the TEI class model.rdgLike, initially
empty, is expanded by the textcrit module to include just the TEI <rdg> element. A project wishing to add an
alternative way of structuring text-critical information could do so by defining their own elements and adding
it to this class.

Another reason for declaring single-member classes is where the class members are not needed in all
documents, but appear in the same place as elements which are very frequently required. For example, the
specialised element <g> used to represent a non-Unicode character or glyph is provided as the only member of
the model.gLike class when the gaiji module is added to a schema. References to this class are included in almost
every content model, since if it is used at all the <g> must be available wherever text is available; however these
references have no effect unless the gaiji module is loaded.

At the other end of the scale, a few of the classes predefined by the tei module are subsequently populated
with very many members. For example, the class model.pPart groups all the classes of element which can
appear within a <p> or paragraph element. The core module alone adds more than fifty elements to this class;
the namesdates module adds another twenty, as does the tagdocs module. Since the <p> element is one of
the basic building blocks of a TEI document it is not surprising that each module will need to add elements
to it. The class system here provides a very convenient way of controlling the resulting complexity. Typically,
elements are not added directly to these very general classes, but via some intermediate semantically-motivated
class.

Just as there are a few classes which have a single member, so there are some classes which are used only once
in the TEI architecture. These classes, which have no superclass and therefore do not fit into the class hierarchy
defined here, are a convenient way of maintaining elements which are highly structured internally, but which
appear from the outside to be uniform objects like others at the same level.> Members of such classes can only
ever appear within one element, or one class of elements. For example, the class model.addrPart is used only to
express the content model for the element <address>; it references some other classes of elements, which can
appear elsewhere, and also some elements which can only appear inside an address.

1.3.2.1 Basic Model Classes

The TEI class system makes the following threefold division of elements:

2In former editions of these Guidelines, such elements were known metaphorically as ‘crystals.

11

1. The TEI Infrastructure

14

1.4.

divisions high level, possibly self-nesting, major divisions of texts. These elements populate the classes
model.divLike, model.div1Like, etc.

chunks elements such as paragraphs and other paragraph-level elements, which can appear directly within
texts or within such divisions, but not within other chunks. These elements populate the class
model.divPart, either directly or by means of other classes such as model.pLike (paragraph-like elements),
model.entryLike, etc.

phrase-level elements elements such as highlighted phrases, book titles, or editorial corrections which can
occur only within chunks (paragraphs or paragraph-level elements), but not between them (and thus
cannot appear directly within a division). These elements populate the class model.phrase.’

The TEI identifies the following fundamental groupings derived from these three:

inter-level elements elements such as lists, notes, quotations, etc. which can appear either between chunks (as
children of a <div>) or within them; these elements populate the class model.inter. Note that this class
is not a superset of the model.phrase and model.chunk classes but rather the group of elements which are
both chunk-like and phrase-like; the classes model.phrase, model.pLike, and model.inter are all disjoint.

components elements which can appear directly within texts or text divisions; this is a combination of the
inter- and chunk- level elements defined above. These elements populate the class model.common, which is
defined as a superset of the classes model.divPart, model.inter, and (when the dictionary module is included
in a schema) model.entryLike.

Broadly speaking, the front, body, and back of a text each comprises a series of components, optionally grouped
into divisions.

As noted above, some elements and element classes belong to none of these groupings; however, over two-
thirds of the 500+ elements defined in the present edition of these Guidelines are classified in this way. Future
editions of these recommendations will extend and develop this classification scheme.

A complete alphabetical list of all model classes is provided in Appendix A Model Classes.

Macros

The infrastructure module defined by this chapter also declares a number of macros, or shortcut names for
frequently occurring parts of other declarations. Macros are used in two ways in the TEI scheme: to stand for
frequently-encountered content models, or parts of content models (1.4.1. Standard Content Models); and to
stand for attribute datatypes (1.4.2. Datatype Macros).

1 Standard Content Models
As far as possible, the TEI schemas use the following set of frequently-encountered content models to help
achieve consistency among different elements.

macro.paraContent (paragraph content) defines the content of paragraphs and similar elements.

macro.limitedContent (paragraph content) defines the content of prose elements that are not used for
transcription of extant materials.

macro.phraseSeq (phrase sequence) defines a sequence of character data and phrase-level elements.

macro.phraseSeq.limited (limited phrase sequence) defines a sequence of character data and those
phrase-level elements that are not typically used for transcribing extant documents.

3*Note that in this context, phrase means any string of characters, and can apply to individual words, parts of words, and groups of words indifferently;
it does not refer only to linguistically-motivated phrasal units. This may cause confusion for readers accustomed to applying the word in a more
restrictive sense.

12

1.4. Macros

Content model Number of Description
elements using
this
macro.phraseSeq 83 any combination of text with elements from the model.gLike,
model.global, or model.phrase classes
macro.paraContent 49 macro.phraseSeq with the addition of model.inter
empty 39 elements that have no content
macro.specialPara 24 macro.paraContent with the addition of model.divPart
macro.phraseSeq.limited 24 a subset of model.phraseSeq appropriate for use in non-
transcriptional contexts
text 21 plain untagged text
macro.xtext 19 any combination of text with elements from the model.gLike class
Table 1.2:

macro.schemaPattern provides a pattern to match elements from the chosen schema language

macro.specialPara ('special' paragraph content) defines the content model of elements such as notes or list
items, which either contain a series of component-level elements or else have the same structure as a
paragraph, containing a series of phrase-level and inter-level elements.

macro.xtext (extended text) defines a sequence of character data and gaiji elements.

The present version of the TEI Guidelines includes some 500 different elements.Table 1 shows, in descending
order of frequency, the seven most commonly used content models.

1.4.2 Datatype Macros

The values which attributes may take in a TEI schema are defined, for the most part, by reference to a TEI
datatype. Each such datatype is defined in terms of other primitive datatypes, derived mostly from W3C
Schema Datatypes, literal values, or other datatypes. This indirection makes it possible for a TEI application to
set constraints either globally or in individual cases, by redefining the datatype definition or the reference to it
respectively. In some cases, the TEI datatype includes additional usage constraints which cannot be enforced
by existing schema languages, although a TEI-compliant processor should attempt to validate them (see further
discussion in chapter 23.3. Conformance).

Where literal values or name tokens are used in a datatype definition, an associated value list supplies
definitions for the significance of suggested or (in the case of closed lists) all possible values.

TEI-defined datatypes may be grouped into those which define normalised values for numeric quantities,
probabilities, or temporal expressions, those which define various kinds of shorthand codes or keys, and those
which define pointers or links.

The following datatypes are used for attributes which are intended to hold normalized values of various
kinds. First, expressions of quantity or probability:

data.certainty defines the range of attribute values expressing a degree of certainty.
data.probability defines the range of attribute values expressing a probability.
data.numeric defines the range of attribute values used for numeric values.
data.count defines the range of attribute values used for a non-negative integer value used as a count.
Examples of attributes using the data.probability datatype include degree on <damage> or <certainty>;
examples of data.numeric include quantity on members of the att. measurement class or value on <numeric>;
examples of data.count include cols on <cell> and <table>.

Next, the datatypes used for attributes which are intended to hold normalized dates or times, durations, or
truth values:

13

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

1. The TEI Infrastructure

data.duration.w3c defines the range of attribute values available for representation of a duration in time
using W3C datatypes.

data.duration.iso defines the range of attribute values available for representation of a duration in time
using ISO 8601 standard formats

data.temporal.w3c defines the range of attribute values expressing a temporal expression such as a date, a
time, or a combination of them, that conform to the W3C XML Schema Part 2: Datatypes
specification.

data.temporal.iso defines the range of attribute values expressing a temporal expression such as a date, a
time, or a combination of them, that conform to the international standard Data elements and
interchange formats — Information interchange — Representation of dates and times.

data.truthValue defines the range of attribute values used to express a truth value.

data.xTruthValue (extended truth value) defines the range of attribute values used to express a truth value
which may be unknown.

data.language defines the range of attribute values used to identify a particular combination of human
language and writing system.

data.sex defines the range of attribute values used to identify human or animal sex.

Note that in each of these cases the values used are those recommended by existing international standards:
ISO 8601 as profiled by XML Schema Part 2: Datatypes Second Edition in the case of durations, times, and date;
W3C Schema datatypes in the case of truth values; BCP 47 in the case of language; and ISO 5218 in the case
of sex.

The following datatypes have more specialised uses:

data.outputMeasurement defines a range of values for use in specifying the size of an object that is
intended for display on the web.

data.namespace defines the range of attribute values used to indicate XML namespaces as defined by the
W3C Namespaces in XML Technical Recommendation.

data.pattern (regular expression pattern) defines attribute values which are expressed as a regular
expression.

data.pointer defines the range of attribute values used to provide a single URI pointer to any other
resource, either within the current document or elsewhere.

By far the largest number of TEI attributes take values which are coded values or names of some kind. These
values may be constrained or defined in a number of different ways, each of which is given a different name, as
follows:

data.key defines the range of attribute values expressing a coded value by means of an arbitrary identifier,
typically taken from a set of externally-defined possibilities.

data.word defines the range of attribute values expressed as a single word or token.

data.name defines the range of attribute values expressed as an XML Name.

data.enumerated defines the range of attribute values expressed as a single XML name taken from a list of
documented possibilities.

data.code defines the range of attribute values expressing a coded value by means of a pointer to some
other element which contains a definition for it.

The attribute key provided by the att.canonical class is currently the only attribute of type datakey. It is
used to supply an externally-defined identifier, such as a database key or filename. Because such identifiers
are externally-defined, no constraints are placed on their possible values: any string of Unicode characters
may be used. Any constraints on their values, such as the rules for constructing a valid database key in a
particular system, may be documented by a <tagUsage> element in the TEI Header, but are not enforced by

14

http://www.w3.org/TR/1999/REC-xml-names-19990114

1.5. The TEI Infrastructure Module

1.5

the datatype as defined here. Such system-specific constraints may however be added to a TEI schema by using
the customisation techniques methods described in 23.2. Personalization and Customization.

Attributes of type data.word, such as age on <person>, are used to supply an identifier expressed as any
kind of single token or word. The TEI places a few constraints on the characters which may be used for this
purpose: only Unicode characters classified as letters, digits, punctuation characters, or symbols can appear in
an attribute value of this kind. Note in particular that such values cannot include whitespace characters. Legal
values include cholmondeley, été, 1234, _content, or xml:id, but not grand wazoo. Attributes of this kind are
sometimes used to associate (by co-reference) elements of different types.

Attributes of type data.name are also words in this sense, but they have the additional constraint that they
must be legal XML identifiers, as defined by the XML 1.0 specification, or successors. As such, they may not
begin with digits or punctuation characters. Legal identifiers include cholmondeley, été, e_content, or xml:id,
but not grand wazoo or 1234. Attributes of this kind are typically used to represent XML element or attribute
names.

Attributes of type data.enumerated, such as new on <shift> or evidence supplied by att.editLike, have the
same definition as data.word above, with the added constraint that the word supplied is taken from a specific
list of possibilities. In each case, the element or class specification which includes the definition for the attribute
will also contain a list of possible values, together with a prose description of their intended significance. This
list may be open (in which case the list is advisory), or closed (in which case it determines the range of legal
values). In this latter case, the datatype will not be data.enumerated, but an explicit list of the possible values.

Attributes of type data.code are similar in function, in that they also supply encoded names for values which
are defined in more detail elsewhere. In this case, however, the full definition is supplied as content of another
XML element, typically but not necessarily in the same document, and it is referenced by means of a pointer.

An attribute may, of course, take more than one value of a given type, for example a list of pointer values, or
a list of words. In the TEI scheme, this information is regarded as a property of the <datatype> element used
to document the attribute in question rather than as a distinct ‘datatype. See further 22.4.5.1. Datatypes.

The TEI Infrastructure Module

The tei module defined by this chapter is a required component of any TEI schema. It provides declarations for
all datatypes, and initial declarations for the attribute classes, model classes, and macros used by other modules
in the TEI scheme. Its components are listed below in alphabetical order:

Module tei: Declarations for classes, datatypes, and macros available to all TEI modules

o Classes defined: att.ascribed att.canonical att.damaged [att.datable [att.datable.w3c att.declarable
att.declaring |att.dimensions |att.divLike [att.duration.w3c |att.editLike att.global [att.handFeatures
att.internetMedia att.interpLike att.measurement att.naming att.personal att.placement att.ranging
att.segLike [att.sourced Matt.spanning att.tableDecoration att.timed att.transcriptional [att.translatable
att.typed attxmlspace model.addrPart model.addressLike model.biblLike = model.biblPart
model.castltemPart ~ model.catDescPart ~ model.choicePart model.common |model.dateLike
model.dimLike model.diviLike model.div2Like model.div3Like model.div4Like model.div5Like
model.div6Like model.div7Like model.divBottom |model.divBottomPart model.divGenLike
model.divLike model.divPart model.divTop model.divTopPart model.divWrapper model.egLike
model.emphLike model.entryPart model.entryPart.top model.featureVal model.featureVal.complex
model.featureVal.single ~ model.frontPart model.frontPart.drama model.gLike = model.global
model.global.edit model.global.meta model.glossLike 'model.graphicLike «model.handDescPart»
model.headLike model.hiLike modelhighlighted |modelimprintPart modelinter |model.ILike
model.lPart model.labelLike model.limitedPhrase model.listLike model.measureLike
model.milestoneLike model. msItemPart model.msQuoteLike model.nameLike model.nameLike.agent
model.noteLike model.oddDecl model.oddRef model.offsetLike model.orgStateLike

15

1. The TEI Infrastructure

model.pLike ~ model.pLike.front =~ model.pPart.data model.pPart.edit = model.pPart.editorial
model.pPart.msdesc model.pPart.transcriptional model.persEventLike model.persStateLike
model.persTraitLike ~ model.personLike /model.personPart model.phrasel model.phrase.xml
model.physDescPart model.placeEventLike model.placeLike model.placeNamePart model.placeStateLike
model.placeTraitLike |model.ptrLike |model.publicationStmtPart |model.qLike |model.quoteLike
model.resourceLike model.respLike model.segLike = model.settingPart ~ model.specDescLike
model.stageLike model.textDescPart model.titlepagePart

o Macros defined: data.certainty data.code data.count data.duration.iso |data.duration.w3c
data.enumerated data.key data.language data.name data.namespace data.numeric data.outputMeasurement
data.pattern data.pointer data.probability data.sex data.temporal.iso |data.temporal.w3c |data.truthValue
data.word data.xTruthValue macro.anyXML macro.limitedContent macro.paraContent macro.phraseSeq
macro.phraseSeq.limited macro.schemaPattern macro.specialPara macro.xtext

The order in which declarations are made within the infrastructure module is critical, since several class
declarations refer to others, which must therefore precede them. Other constraints on the order of declarations
derive from the way in which the modularity of the TEI scheme is implemented in different schema languages.
The XML DTD fragment implementing this TEI module makes extensive use of parameter entities and marked
sections to effect a kind of conditional construction; the RELAX NG schema fragment similarly predeclares
a number of patterns with null (‘notAllowed’) values. These issues are further discussed in chapter 23.4.
Implementation of an ODD System.

16

Chapter 2

The TEI Header

This chapter addresses the problems of describing an encoded work so that the text itself, its source, its
encoding, and its revisions are all thoroughly documented. Such documentation is equally necessary for
scholars using the texts, for software processing them, and for cataloguers in libraries and archives. Together
these descriptions and declarations provide an electronic analogue to the title page attached to a printed work.
They also constitute an equivalent for the content of the code books or introductory manuals customarily
accompanying electronic data sets.

Every TEI-conformant text must carry such a set of descriptions, prefixed to it and encoded as described in
this chapter. The set is known as the TEI header, tagged <teiHeader>, and has four major parts:

1. afile description, tagged <fileDesc>, containing a full bibliographical description of the computer file itself,
from which a user of the text could derive a proper bibliographic citation, or which a librarian or archivist
could use in creating a catalogue entry recording its presence within a library or archive. The term computer
file here is to be understood as referring to the whole entity or document described by the header, even
when this is stored in several distinct operating system files. The file description also includes information
about the source or sources from which the electronic document was derived. The TEI elements used to
encode the file description are described in section 2.2. The File Description below.

2. an encoding description, tagged <encodingDesc>, which describes the relationship between an electronic
text and its source or sources. It allows for detailed description of whether (or how) the text was normalized
during transcription, how the encoder resolved ambiguities in the source, what levels of encoding or
analysis were applied, and similar matters. The TEI elements used to encode the encoding description
are described in section 2.3. The Encoding Description below.

3. a text profile, tagged <profileDesc>, containing classificatory and contextual information about the text,
such as its subject matter, the situation in which it was produced, the individuals described by or
participating in producing it, and so forth. Such a text profile is of particular use in highly structured
composite texts such as corpora or language collections, where it is often highly desirable to enforce a
controlled descriptive vocabulary or to perform retrievals from a body of text in terms of text type or
origin. The text profile may however be of use in any form of automatic text processing. The TEI elements
used to encode the profile description are described in section 2.4. The Profile Description below.

4. arevision history, tagged <revisionDesc>, which allows the encoder to provide a history of changes made
during the development of the electronic text. The revision history is important for version control and for
resolving questions about the history of a file. The TEI elements used to encode the revision description
are described in section 2.5. The Revision Description below.

17

2. The TEI Header

2.1

2.1.

A TEI header can be a very large and complex object, or it may be a very simple one. Some application
areas (for example, the construction of language corpora and the transcription of spoken texts) may require
more specialized and detailed information than others. The present proposals therefore define both a core set
of elements (all of which may be used without formality in any TEI header) and some additional elements
which become available within the header as the result of including additional specialized modules within the
schema. When the module for language corpora (described in chapter 15. Language Corpora) is in use, for
example, several additional elements are available, as further detailed in that chapter.

The next section of the present chapter briefly introduces the overall structure of the header and the kinds
of data it may contain. This is followed by a detailed description of all the constituent elements which may be
used in the core header. Section 2.6. Minimal and Recommended Headers , at the end of the present chapter,
discusses the recommended content of a minimal TEI header and its relation to standard library cataloguing
practices.

Organization of the TEl Header

1 The TEI Header and its Components

The <teiHeader> element should be clearly distinguished from the front matter of the text itself (for which see
section 4.5. Front Matter). A composite text, such as a corpus or collection, may contain several headers, as
further discussed below. In the usual case, however, a TEI-conformant text will contain a single <teiHeader>
element, followed by a single <text> element.

The header element has the following description:

<teiHeader> (TEI Header) supplies the descriptive and declarative information making up an electronic
title page prefixed to every TEI-conformant text.
@type specifies the kind of document to which the header is attached, for example whether it is
a corpus or individual text.

As discussed above, the <teiHeader> element has four principal components:
<fileDesc> (file description) contains a full bibliographic description of an electronic file.

<encodingDesc> (encoding description) documents the relationship between an electronic text and the
source or sources from which it was derived.

<profileDesc> (text-profile description) provides a detailed description of non-bibliographic aspects of a
text, specifically the languages and sublanguages used, the situation in which it was produced, the
participants and their setting.

<revisionDesc> (revision description) summarizes the revision history for a file.

Of these, only the <fileDesc> element is required in all TEI headers; the others are optional. The top level
elements in the full form of a TEI header are thus:

<teiHeader>
<fileDesc>
<l-- ... -->
</fileDesc>
<encodingDesc>
<l-- ... -->
</encodingDesc>
<profileDesc>
<l-- ... -->
</profileDesc>
<revisionDesc>
<l-- ... -->

18

2.1. Organization of the TEI Header

</revisionDesc>
</teiHeader>

while a minimal header takes the form:

<teiHeader>
<fileDesc>

<l-- ... -->
</fileDesc>

</teiHeader>

The content of the elements making up a TEI Header may be given in any language, not necessarily that of
the text to which the header applies, and not necessarily English. As elsewhere, the xml:lang attribute should
be used at an appropriate level to specify the language. For example, in the following (incomplete) example, an
English text has been given a French header:

<TEI>

<teiHeader xml:lang="fra">
<l-- ... -->

</teiHeader>

<text xml:lang="eng">

<l-- ... -->
</text>
</TEI>

In the case of language corpora or collections, it may be desirable to record header information either at
the level of the individual components in the corpus or collection, or at the level of the corpus or collection
itself (more details concerning the tagging of composite texts are given in section 15. Language Corpora, which
should be read in conjunction with the current chapter). The type attribute may be used to indicate whether
the header applies to a corpus or a single text. A corpus may thus take the form:

<teiCorpus>
<teiHeader type="corpus">

<!-- corpus-level metadata here -->
</teiHeader>
<TEI>

<teiHeader type="text">
<!-- metadata specific to this text here -->
</teiHeader>
<text>
<l-- ... -->
</text>
</TEI>
<TEI>
<teiHeader type="text">
<!-- metadata specific to this text here -->
</teiHeader>
<text>
<l-- ... -->
</text>
</TEI>
</teiCorpus>

19

2. The TEI Header

2.1.2 Types of Content in the TEl Header

The elements occurring within the TEI header may contain several types of content; the following list indicates
how these types of content are described in the following sections:

free prose Most elements contain simple running prose at some level. Many elements may contain either
prose (possibly organized into paragraphs) or more specific elements, which themselves contain prose.
In this chapter's descriptions of element content, the phrase prose description should be understood to
imply a series of paragraphs, each marked as a <p> element. The word phrase, by contrast, should be
understood to imply character data, interspersed as need be with phrase-level elements, but not organized
into paragraphs. For more information on paragraphs, highlighted phrases, lists, etc., see section 3.1.
Paragraphs.

grouping elements Elements whose names end with the suffix Stmt (e.g. <editionStmt>, <titleStmt>) usually
enclose a group of specialized elements recording some structured information. In the case of the
bibliographic elements, the suffix Stmt is used in names of elements corresponding to the ‘areas’ of the
International Standard Bibliographic Description.! In most cases grouping elements may contain prose
descriptions as an alternative to the set of specialized elements, thus allowing the encoder to choose
whether or not the information concerned should be presented in a structured form or in prose.

declarations Elements whose names end with the suffix Decl (e.g. <tagsDecl>, <refsDecl>) enclose informa-
tion about specific encoding practices applied in the electronic text; often these practices are described
in coded form. Typically, such information takes the form of a series of declarations, identifying a code
with some more complex structure or description. A declaration which applies to more than one text or
division of a text need not be repeated in the header of each such text or subdivision. Instead, the decls
attribute of each text (or subdivision of the text) to which the declaration applies may be used to supply a
cross-reference to it, as further described in section 15.3. Associating Contextual Information with a Text.

descriptions Elements whose names end with the suffix Desc (e.g. <settingDesc>, <projectDesc>) contain
a prose description, possibly, but not necessarily, organized under some specific headings by suggested
sub-elements.

2.1.3 Model Classes in the TEl Header

The TEI Header provides a very rich collection of metadata categories, but makes no claim to be exhaustive.
It is certainly the case that individual projects may wish to record specialised metadata which either does not
fit within one of the predefined categories identified by the TEI Header or requires a more specialized element
structure than is proposed here. To overcome this problem, the encoder may elect to define additional elements
using the customization methods discussed in 23.2. Personalization and Customization. The TEI class system
makes such customizations simpler to effect and easier to use in interchange.

These classes are specific to parts of the header:

model.applicationLike groups elements used to record application-specific information about a document
in its header.

model.catDescPart groups component elements of the TEI Header Category Description.

model.editorialDeclPart groups elements which may be used inside <editorialDecl> and appear multiple
times.

model.encodingPart groups elements which may be used inside <encodingDesc> and appear multiple
times.

! For more information on this highly influential family of standards, first proposed in 1969 by the International Federation of Library Associations,
see http://www.ifla.org/VII/s13/pubs/isbd.htm On the relation between the TEI proposals and other standards for bibliographic description,
see further section 2.7. Note for Library Cataloguers.

20

http://www.ifla.org/VII/s13/pubs/isbd.htm

2.2. The File Description

model.profileDescPart groups elements which may be used inside <profileDesc> and appear multiple
times.

model.headerPart groups high level elements which may appear more than once in a TEI Header.

model.sourceDescPart groups elements which may be used inside <sourceDesc> and appear multiple
times.

model.textDescPart groups elements used to categorise a text for example in terms of its situational
parameters.

2.2 TheFile Description

This section describes the <fileDesc> element, which is the first component of the <teiHeader> element.

The bibliographic description of a machine-readable or digital text resembles in structure that of a book,
an article, or any other kind of textual object. The file description element of the TEI header has therefore
been closely modelled on existing standards in library cataloguing; it should thus provide enough information
to allow users to give standard bibliographic references to the electronic text, and to allow cataloguers to
catalogue it. Bibliographic citations occurring elsewhere in the header, and also in the text itself, are derived
from the same model (on bibliographic citations in general, see further section 3.11. Bibliographic Citations and
References). See further section 2.7. Note for Library Cataloguers.

The bibliographic description of an electronic text should be supplied by the mandatory <fileDesc> element:

<fileDesc> (file description) contains a full bibliographic description of an electronic file.

The <fileDesc> element contains three mandatory elements and four optional elements, each of which is
described in more detail in sections 2.2.1. The Title Statement to|2.2.6. The Notes Statement below. These elements
are listed below in the order in which they must be given within the <fileDesc> element.

<titleStmt> (title statement) groups information about the title of a work and those responsible for its
intellectual content.

<editionStmt> (edition statement) groups information relating to one edition of a text.

<extent> describes the approximate size of a text as stored on some carrier medium, whether digital or
non-digital, specified in any convenient units.

<publicationStmt> (publication statement) groups information concerning the publication or distribution
of an electronic or other text.

<seriesStmt> (series statement) groups information about the series, if any, to which a publication belongs.

<notesStmt> (notes statement) collects together any notes providing information about a text additional
to that recorded in other parts of the bibliographic description.

<sourceDesc> (source description) describes the source from which an electronic text was derived or
generated, typically a bibliographic description in the case of a digitized text, or a phrase such as
"born digital” for a text which has no previous existence.

A file description containing all possible sub-elements has the following structure:

<teiHeader>
<fileDesc>
<titleStmt>

<l-- ... -->
</titleStmt>
<editionStmt>

<l-- ... -->
</editionStmt>
<extent>

<l-- ... -->

21

2. The TEI Header

</extent>
<publicationStmt>

<l-- ... -->
</publicationStmt>
<seriesStmt>

<l-- ... -->
</seriesStmt>
<notesStmt>

<l-- ... -->
</notesStmt>
<sourceDesc>

<l-- ... -->
</sourceDesc>

</fileDesc>
</teiHeader>

Several of these elements may be omitted; a minimal file description has the following structure:

<teiHeader>
<fileDesc>
<titleStmt>
<l-- ... -->
</titleStmt>
<publicationStmt>
<l-- ... -->
</publicationStmt>
<sourceDesc>
<l-- ... -->
</sourceDesc>
</fileDesc>
<!-- other optional parts of the header here -->
</teiHeader>

2.2.1 TheTitle Statement
The <titleStmt> element is the first component of the <fileDesc> element, and is mandatory:

<titleStmt> (title statement) groups information about the title of a work and those responsible for its
intellectual content.

It contains the title given to the electronic work, together with one or more optional statements of responsibility
which identify the encoder, editor, author, compiler, or other parties responsible for it:
<title> contains a title for any kind of work.

<author> in a bibliographic reference, contains the name(s) of the author(s), personal or corporate, of a
work; for example in the same form as that provided by a recognized bibliographic name authority.

<editor> secondary statement of responsibility for a bibliographic item, for example the name of an
individual, institution or organization, (or of several such) acting as editor, compiler, translator, etc.

<sponsor> specifies the name of a sponsoring organization or institution.

<funder> (funding body) specifies the name of an individual, institution, or organization responsible for
the funding of a project or text.

<principal> (principal researcher) supplies the name of the principal researcher responsible for the
creation of an electronic text.

22

2.2. The File Description

<respStmt> (statement of responsibility) supplies a statement of responsibility for the intellectual content
of a text, edition, recording, or series, where the specialized elements for authors, editors, etc. do not
suffice or do not apply.

<resp> (responsibility) contains a phrase describing the nature of a person's intellectual responsibility.

<name> (name, proper noun) contains a proper noun or noun phrase.

The <title> element contains the chief name of the electronic work, including any alternative title or subtitles
it may have. It may be repeated, if the work has more than one title (perhaps in different languages) and takes
whatever form is considered appropriate by its creator. Where the electronic work is derived from an existing
source text, it is strongly recommended that the title for the former should be derived from the latter, but
clearly distinguishable from it, for example by the addition of a phrase such as “: an electronic transcription’ or
‘a digital edition. This will distinguish the electronic work from the source text in citations and in catalogues
which contain descriptions of both types of material.

The electronic work will also have an external name (its ‘filename’ or ‘data set name’) or reference number
on the computer system where it resides at any time. This name is likely to change frequently, as new copies of
the file are made on the computer system. Its form is entirely dependent on the particular computer system in
use and thus cannot always easily be transferred from one system to another. Moreover, a given work may be
composed of many files. For these reasons, these Guidelines strongly recommend that such names should not
be used as the <title> for any electronic work.

Helpful guidance on the formulation of useful descriptive titles in difficult cases may be found in the
Anglo-American Cataloguing Rules (Gorman and Winkler, 1978, chapter 25) or in equivalent national-level
bibliographical documentation.

The elements <author>, <editor>, <sponsor>, <funder>, and <principal>, are specializations of the more
general <respStmt> element. These elements are used to provide the statements of responsibility which identify
the person(s) responsible for the intellectual or artistic content of an item and any corporate bodies from which
it emanates.

Any number of such statements may occur within the title statement. At a minimum, identify the author of
the text and (where appropriate) the creator of the file. If the bibliographic description is for a corpus, identify
the creator of the corpus. Optionally include also names of others involved in the transcription or elaboration
of the text, sponsors, and funding agencies. The name of the person responsible for physical data input need
not normally be recorded, unless that person is also intellectually responsible for some aspect of the creation
of the file.

Where the person whose responsibility is to be documented is not an author, sponsor, funding body,
or principal researcher, the <respStmt> element should be used. This has two subcomponents: a <name>
element identifying a responsible individual or organization, and a <resp> element indicating the nature of the
responsibility. No specific recommendations are made at this time as to appropriate content for the <resp>: it
should make clear the nature of the responsibility concerned, as in the examples below.

Names given may be personal names or corporate names. Give all names in the form in which the persons
or bodies wish to be publicly cited. This would usually be the fullest form of the name, including first names.

Examples:

<titleStmt>
<title>Capgrave's Life of St. John Norbert: a
machine-readable transcription</title>
<respStmt>
<resp>compiled by</resp>

2 Agencies compiling catalogues of machine-readable files are recommended to use available authority lists, such as the Library of Congress Name
Authority List, for all common personal names.

23

2. The TEI Header

<name>P.J. Lucas</name>
</respStmt>
</titleStmt>

<titleStmt>
<title>Two stories by Edgar Allen Poe: electronic version</title>
<author>Poe, Edgar Allen (1809-1849)</author>
<respStmt>
<resp>compiled by</resp>
<name>James D. Benson</name>
</respStmt>
</titleStmt>

<titleStmt>
<title>Yogadarsanam (arthat
yogasutraputhah):
a digital edition.</title>
<title>The Yogasitras of Patafjali:
a digital edition.</title>
<funder>Wellcome Institute for the History of Medicine</funder>
<principal>Dominik Wujastyk</principal>
<respStmt>
<name>Wieslaw Mical</name>
<resp>data entry and proof correction</resp>
</respStmt>
<respStmt>
<name>Jan Hajic</name>
<resp>conversion to TEI-conformant markup</resp>
</respStmt>
</titleStmt>

2.2.2 The Edition Statement

The <editionStmt> element is the second component of the <fileDesc> element. It is optional but recom-
mended.

<editionStmt> (edition statement) groups information relating to one edition of a text.
It contains either phrases or more specialized elements identifying the edition and those responsible for it:
<edition> (edition) describes the particularities of one edition of a text.
<respStmt> (statement of responsibility) supplies a statement of responsibility for the intellectual content
of a text, edition, recording, or series, where the specialized elements for authors, editors, etc. do not
suffice or do not apply.
<name> (name, proper noun) contains a proper noun or noun phrase.
<resp> (responsibility) contains a phrase describing the nature of a person's intellectual responsibility.

For printed texts, the word edition applies to the set of all the identical copies of an item produced from
one master copy and issued by a particular publishing agency or a group of such agencies. A change in the
identity of the distributing body or bodies does not normally constitute a change of edition, while a change in
the master copy does.

For electronic texts, the notion of a ‘master copy’ is not entirely appropriate, since they are far more easily
copied and modified than printed ones; nonetheless the term edition may be used for a particular state of

24

2.2. The File Description

a machine-readable text at which substantive changes are made and fixed. Synonymous terms used in these
Guidelines are version, level, and release. The words revision and update, by contrast, are used for minor changes
to a file which do not amount to a new edition.

No simple rule can specify how ‘substantive’ changes have to be before they are regarded as producing a new
edition, rather than a simple update. The general principle proposed here is that the production of a new edition
entails a significant change in the intellectual content of the file, rather than its encoding or appearance. The
addition of analytic coding to a text would thus constitute a new edition, while automatic conversion from one
coded representation to another would not. Changes relating to the character code or physical storage details,
corrections of misspellings, simple changes in the arrangement of the contents and changes in the output format
do not normally constitute a new edition, whereas the addition of new information (e.g. a linguistic analysis
expressed in part-of-speech tagging, sound or graphics, referential links to external data sets) almost always
does.

Clearly, there will always be borderline cases and the matter is somewhat arbitrary. The simplest rule is: if
you think that your file is a new edition, then call it such. An edition statement is optional for the first release
of a computer file; it is mandatory for each later release, though this requirement cannot be enforced by the
parser.

Note that all changes in a file, whether or not they are regarded as constituting a new edition or simply a new
revision, should be independently noted in the revision description section of the file header (see section 2.5.
The Revision Description).

The <edition> element should contain phrases describing the edition or version, including the word edition,
version, or equivalent, together with a number or date, or terms indicating difference from other editions such
as new edition, revised edition etc. Any dates that occur within the edition statement should be marked with
the <date> element. The n attribute of the <edition> element may be used as elsewhere to supply any formal
identification (such as a version number) for the edition.

One or more <respStmt> elements may also be used to supply statements of responsibility for the edition
in question. These may refer to individuals or corporate bodies and can indicate functions such as that of a
reviser, or can name the person or body responsible for the provision of supplementary matter, of appendices,
etc., in a new edition. For further detail on the <respStmt> element, see section 3.11. Bibliographic Citations
and References.

Some examples follow:

<editionStmt>
<edition n="P2">Second draft, substantially
extended, revised, and corrected.</edition>
</editionStmt>

<editionStmt>
<edition>Student's edition, <date>June 1987</date>
</edition>
<respStmt>
<resp>New annotations by</resp>
<name>George Brown</name>
</respStmt>
</editionStmt>

2.2.3 Type and Extent of File

The <extent> element is the third component of the <fileDesc> element. It is optional.

25

2. The TEI Header

<extent> describes the approximate size of a text as stored on some carrier medium, whether digital or
non-digital, specified in any convenient units.

For printed books, information about the carrier, such as the kind of medium used and its size, are of great
importance in cataloguing procedures. The print-oriented rules for bibliographic description of an item's
medium and extent need some re-interpretation when applied to electronic media. An electronic file exists as
a distinct entity quite independently of its carrier and remains the same intellectual object whether it is stored
on a magnetic tape, a CD-ROM, a set of floppy disks, or as a file on a mainframe computer. Since, moreover,
these Guidelines are specifically aimed at facilitating transparent document storage and interchange, any purely
machine-dependent information should be irrelevant as far as the file header is concerned.

This is particularly true of information about file-type although library-oriented rules for cataloguing often
distinguish two types of computer file: ‘data’ and ‘programs. This distinction is quite difficult to draw in some
cases, for example, hypermedia or texts with built in search and retrieval software.

Although it is equally system-dependent, some measure of the size of the computer file may be of use for
cataloguing and other practical purposes. Because the measurement and expression of file size is fraught with
difficulties, only very general recommendations are possible; the element <extent> is provided for this purpose.
It contains a phrase indicating the size or approximate size of the computer file in one of the following ways:

« in bytes of a specified length (e.g. ‘4000 16-bit bytes’)
o as falling within a range of categories, for example:
less than 1 Mb

between 1 Mb and 5 Mb

between 6 Mb and 10 Mb

over 10 Mb

« in terms of any convenient logical units (for example, words or sentences, citations, paragraphs)

« in terms of any convenient physical units (for example, blocks, disks, tapes)

The use of standard abbreviations for units of quantity is recommended where applicable, here as elsewhere
(seehttp://physics.nist.gov/cuu/Units/binary.html).

Examples:

<extent>between 1 16-bit MB and 2 16-bit MB</extent>
<extent>4.2 MiB</extent>

<extent>4532 bytes</extent>

<extent>3200 sentences</extent>

<extent>5 90 mm High Density Diskettes</extent>

2.2.4 Publication, Distribution, etc.
The <publicationStmt> element is the fourth component of the <fileDesc> element and is mandatory.

<publicationStmt> (publication statement) groups information concerning the publication or distribution
of an electronic or other text.

It may contain either a simple prose description organized as one or more paragraphs, or one or more
elements from the model.publicationStmt class. This class groups a number of elements which are discussed
in order below.

<publisher> provides the name of the organization responsible for the publication or distribution of a
bibliographic item.
<distributor> supplies the name of a person or other agency responsible for the distribution of a text.

26

http://physics.nist.gov/cuu/Units/binary.html

2.2. The File Description

<authority> (release authority) supplies the name of a person or other agency responsible for making an
electronic file available, other than a publisher or distributor.

The publisher is the person or institution by whose authority a given edition of the file is made public.
The distributor is the person or institution from whom copies of the text may be obtained. Where a text is
not considered formally published, but is nevertheless made available for circulation by some individual or
organization, this person or institution is termed the release authority.

At least one of the above three elements must be present, unless the entire publication statement is given as
prose. Each may be followed by one or more of the following elements, in the following order:?

<pubPlace> (publication place) contains the name of the place where a bibliographic item was published.

<address> contains a postal address, for example of a publisher, an organization, or an individual.

<idno> (identifying number) supplies any number or other identifier used to identify a bibliographic item
in a standardized way.

@type categorizes the number, for example as an ISBN or other standard series.

<availability> supplies information about the availability of a text, for example any restrictions on its use
or distribution, its copyright status, etc.

@status supplies a code identifying the current availability of the text.

<date> contains a date in any format.

Note that the dates, places, etc., given in the publication statement relate to the publisher, distributor, or
release authority most recently mentioned. If the text was created at some date other than its date of publication,
its date of creation should be given within the <profileDesc> element, not in the publication statement. Give
any other useful dates (e.g., dates of collection of data) in a note.

Additional detailed elements may be used for the encoding of names, dates, and addresses, as further
described in section 3.5. Names, Numbers, Dates, Abbreviations, and Addresses when the module described in
chapter 13. Names, Dates, People, and Places is included in a schema.

Examples:

<publicationStmt>
<publisher>0xford University Press</publisher>
<pubPlace>0xford</pubPlace>
<date>1989</date>
<idno type="ISBN">0-19-254705-4</idno>
<availability>

<p>Copyright 1989, Oxford University Press</p>

</availability>

</publicationStmt>

<publicationStmt>
<authority>James D. Benson</authority>
<pubPlace>London</pubPlace>
<date>1984</date>

</publicationStmt>

3This constraint is not however enforced by the current version of the TEI Guidelines.

27

2. The TEI Header

<publicationStmt>
<publisher>Sigma Press</publisher>
<address>
<addrLine>21 High Street,</addrLine>
<addrLine>Wilmslow,</addrLine>
<addrLine>Cheshire M24 3DF</addrLine>
</address>
<date>1991</date>
<distributor>0xford Text Archive</distributor>
<idno type="ota">1256</idno>
<availability>
<p>Available with prior consent of depositor for
purposes of academic research and teaching only.</p>
</availability>
</publicationStmt>

2.2.5 The Series Statement
The <seriesStmt> element is the fifth component of the <fileDesc> element and is optional.
<seriesStmt> (series statement) groups information about the series, if any, to which a publication belongs.
In bibliographic parlance, a series may be defined in one of the following ways:
o A group of separate items related to one another by the fact that each item bears, in addition to its own title

proper, a collective title applying to the group as a whole. The individual items may or may not be numbered.

« Each of two or more volumes of essays, lectures, articles, or other items, similar in character and issued in
sequence.

o A separately numbered sequence of volumes within a series or serial.

The <seriesStmt> element may contain a prose description or one or more of the following more specific
elements:

<title> contains a title for any kind of work.

<idno> (identifying number) supplies any number or other identifier used to identify a bibliographic item
in a standardized way.

<respStmt> (statement of responsibility) supplies a statement of responsibility for the intellectual content
of a text, edition, recording, or series, where the specialized elements for authors, editors, etc. do not
suffice or do not apply.

<resp> (responsibility) contains a phrase describing the nature of a person's intellectual responsibility.
<name> (name, proper noun) contains a proper noun or noun phrase.

The <idno> may be used to supply any identifying number associated with the item, including both standard
numbers such as an ISSN and particular issue numbers. (Arabic numerals separated by punctuation are
recommended for this purpose: 6.19.33, for example, rather than VI/xix:33). Its type attribute is used to
categorize the number further, taking the value ISSN for an ISSN for example.

Examples:

<seriesStmt>
<title level="s">Machine-Readable Texts for the Study of
Indian Literature</title>
<respStmt>
<resp>ed. by</resp>

28

2.2. The File Description

<name>Jan Gonda</name>
</respStmt>
<idno type="vol">1.2</idno>
<idno type="ISSN">0 345 6789</idno>

</seriesStmt>

2.2.6

The Notes Statement

The <notesStmt> element is the sixth component of the <fileDesc> element and is optional. If used, it contains
one or more <note> elements, each containing a single piece of descriptive information of the kind treated as
‘general notes’ in traditional bibliographic descriptions.

<notesStmt> (notes statement) collects together any notes providing information about a text additional

to that recorded in other parts of the bibliographic description.

<note> contains a note or annotation.

Some information found in the notes area in conventional bibliography has been assigned specific elements

in these Guidelines; in particular the following items should be tagged as indicated, rather than as general
notes:

the nature, scope, artistic form, or purpose of the file; also the genre or other intellectual category to
which it may belong: e.g. “Text types: newspaper editorials and reportage, science fiction, westerns, and
detective stories. These should be formally described within the <profileDesc> element (section 2.4. The
Profile Description).

summary description providing a factual, non-evaluative account of the subject content of the file: e.g.
“Transcribes interviews on general topics with native speakers of English in 17 cities during the spring and
summer of 1963 These should also be formally described within the <profileDesc> element (section 2.4. The
Profile Description).

bibliographic details relating to the source or sources of an electronic text: e.g. “Transcribed from the Norton
facsimile of the 1623 Folio. These should be formally described in the <sourceDesc> element (section 2.2.7.
The Source Description).

further information relating to publication, distribution, or release of the text, including sources from which
the text may be obtained, any restrictions on its use or formal terms on its availability. These should be placed
in the appropriate division of the <publicationStmt> element (section 2.2.4. Publication, Distribution, etc.).

publicly documented numbers associated with the file: e.g. ICPSR study number 1803’ or ‘Oxford Text
Archive text number 1243° These should be placed in an <idno> element within the appropriate division
of the <publicationStmt> element. International Standard Serial Numbers (ISSN), International Standard
Book Numbers (ISBN), and other internationally agreed upon standard numbers that uniquely identify an
item, should be treated in the same way, rather than as specialized bibliographic notes.

Nevertheless, the <notesStmt> element may be used to record potentially significant details about the file

and its features, e.g.:

dates, when they are relevant to the content or condition of the computer file: e.g. ‘manual dated 1983,
‘Interview wave I: Apr. 1989; wave IL: Jan. 1990°

names of persons or bodies connected with the technical production, administration, or consulting func-
tions of the effort which produced the file, if these are not named in statements of responsibility in the title
or edition statements of the file description: e.g. ‘Historical commentary provided by Mark Cohen’

availability of the file in an additional medium or information not already recorded about the availability of
documentation: e.g. ‘User manual is loose-leaf in eleven paginated sections’

29

2. The TEI Header

« language of work and abstract, if not encoded in the <langUsage> element, e.g. “Text in English with
summaries in French and German’

o The unique name assigned to a serial by the International Serials Data System (ISDS), if not encoded in an
<idno>

o lists of related publications, either describing the source itself, or concerned with the creation or use of the
electronic work, e.g. ‘Texts used in Burrows (1987)’
Each such item of information may be tagged using the general-purpose <note> element, which is described
in section 3.8. Notes, Annotation, and Indexing. Groups of notes are contained within the <notesStmt> element,
as in the following example:

<notesStmt>
<note>Historical commentary provided by Mark Cohen.</note>
<note>0CR scanning done at University of Toronto.</note>
</notesStmt>

There are advantages, however, to encoding such information with more precise elements elsewhere in the TEI
header, when such elements are available. For example, the notes above might be encoded as follows:

<titleStmt>
<title>..</title>
<respStmt>
<persName>Mark Cohen</persName>
<resp>historical commentary</resp>
</respStmt>
<respStmt>
<orgName>University of Toronto</orgName>
<resp>0CR scanning</resp>
</respStmt>
</titleStmt>

2.2.7 The Source Description
The <sourceDesc> element is the seventh and final component of the <fileDesc> element. It is a mandatory
element and is used to record details of the source or sources from which a computer file is derived. This
might be a printed text or manuscript, another computer file, an audio or video recording of some kind, or a
combination of these. An electronic file may also have no source, if what is being catalogued is an original text
created in electronic form.
<sourceDesc> (source description) describes the source from which an electronic text was derived or
generated, typically a bibliographic description in the case of a digitized text, or a phrase such as
"born digital" for a text which has no previous existence.

The <sourceDesc> element may contain little more than a simple prose description, or a brief note stating
that the document has no source:

<sourceDesc>
<p>Born digital.</p>
</sourceDesc>

Alternatively, it may contain elements drawn from the following three classes:

model.biblLike groups elements containing a bibliographic description.

30

2.2. The File Description

model.sourceDescPart groups elements which may be used inside <sourceDesc> and appear multiple
times.

model.listLike groups list-like elements.

These classes make available by default a range of ways of providing bibliographic citations which specify
the provenance of the text. For written or printed sources, the source may be described in the same way as any
other bibliographic citation, using one of the following elements:

<bibl> (bibliographic citation) contains a loosely-structured bibliographic citation of which the
sub-components may or may not be explicitly tagged.

<biblStruct> (structured bibliographic citation) contains a structured bibliographic citation, in which only
bibliographic sub-elements appear and in a specified order.

<listBibl> (citation list) contains a list of bibliographic citations of any kind.

These elements are described in more detail in section 3.11. Bibliographic Citations and References. Using
them, a source might be described in very simple terms:

<sourceDesc>
<bibl>The first folio of Shakespeare, prepared by
Charlton Hinman (The Norton Facsimile, 1968)</bibl>
</sourceDesc>

or with more elaboration:

<sourceDesc>
<biblStruct xml:lang="fr">
<monogr>
<author>Eugéne Sue</author>
<title>Martin, l'enfant trouvé</title>
<title type="sub">Mémoires d'un valet de chambre</title>
<imprint>
<pubPlace>Bruxelles et Leipzig</pubPlace>
<publisher>C. Muquardt</publisher>
<date when="1846">1846</date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>

When the header describes a text derived from some pre-existing TEI-conformant or other digital document,
it may be simpler to use the following element:
<biblFull> (fully-structured bibliographic citation) contains a fully-structured bibliographic citation, in
which all components of the TEI file description are present.
since this is designed specifically for documents derived from texts which were ‘born digital, as further
discussed in section 2.2.8. Computer Files Derived from Other Computer Files .

When the module for manuscript description is included in a schema, this class also makes available the
following element:

<msDesc> (manuscript description) contains a description of a single identifiable manuscript or other
text-bearing object.

which enables the encoder to record very detailed information about one or more manuscript or analogous
sources, as further discussed in |10. Manuscript Description.

31

2. The TEI Header

The model.sourceDescPart class also makes available additional elements when additional modules are
included. For example, when the spoken module is included, the <sourceDesc> element may also include
the following special-purpose elements, intended for cases where an electronic text is derived from a spoken
text rather than a written one:

<scriptStmt> (script statement) contains a citation giving details of the script used for a spoken text.
<recordingStmt> (recording statement) describes a set of recordings used as the basis for transcription of

a spoken text.

Full descriptions of these elements and their contents are given in section 8.2. Documenting the Source of
Transcribed Speech.

The source description may also include lists of names, persons, places, etc. when these are considered to
form part of the source for an encoded document. When such information is recorded using the specialized
elements discussed in the namesdates module (13. Names, Dates, People, and Places), the class model.listLike
makes available the following elements to hold such information:

<listNym> (list of canonical names) contains a list of nyms, that is, standardized names for any thing.
<listOrg> (list of organizations) contains a list of elements, each of which provides information about an

identifiable organization.

<listPerson> (list of persons) contains a list of descriptions, each of which provides information about an

identifiable person or a group of people, for example the participants in a language interaction, or
the people referred to in a historical source.

<listPlace> (list of places) contains a list of places, optionally followed by a list of relationships (other than

containment) defined amongst them.

2.2.8 Computer Files Derived from Other Computer Files

2.3

If a computer file (call it B) is derived not from a printed source but from another computer file (call it A)
which includes a TEI file header, then the source text of computer file B is another computer file, A. The four
sections of A's file header will need to be incorporated into the new header for B in slightly differing ways, as
listed below:

fileDesc A's file description should be copied into the <sourceDesc> section of B's file description, enclosed
within a <biblFull> element

profileDesc A's <profileDesc> should be copied into B's, in principle unchanged; it may however be expanded
by project-specific information relating to B.

encodingDesc A's encoding practice may or (more likely) may not be the same as B's. Since the object of the
encoding description is to define the relationship between the current file and its source, in principle only
changes in encoding practice between A and B need be documented in B. The relationship between A and
its source(s) is then only recoverable from the original header of A. In practice it may be more convenient
to create a new complete <encodingDesc> for B based on A's.

revisionDesc B is a new computer file, and should therefore have a new revision description. If, however, it is
felt useful to include some information from A's <revisionDesc>, for example dates of major updates or
versions, such information must be clearly marked as relating to A rather than to B.

This concludes the discussion of the <fileDesc> element and its contents.

The Encoding Description

The <encodingDesc> element is the second major subdivision of the TEI header. It specifies the methods and
editorial principles which governed the transcription or encoding of the text in hand and may also include sets

32

2.3. The Encoding Description

of coded definitions used by other components of the header. Though not formally required, its use is highly
recommended.

<encodingDesc> (encoding description) documents the relationship between an electronic text and the
source or sources from which it was derived.

The encoding description may contain paragraphs of text, marked up using the <p> element, or it may
contain more specialised elements taken from the model.encodingPart class. By default, this class makes
available the following elements:

<projectDesc> (project description) describes in detail the aim or purpose for which an electronic file was
encoded, together with any other relevant information concerning the process by which it was
assembled or collected.

<samplingDecl> (sampling declaration) contains a prose description of the rationale and methods used in
sampling texts in the creation of a corpus or collection.

<editorialDecl> (editorial practice declaration) provides details of editorial principles and practices
applied during the encoding of a text.

<tagsDecl> (tagging declaration) provides detailed information about the tagging applied to a document.

<refsDecl> (references declaration) specifies how canonical references are constructed for this text.

<classDecl> (classification declarations) contains one or more taxonomies defining any classificatory
codes used elsewhere in the text.

<applnfo> (application information) records information about an application which has edited the TEI
file.

Each of these elements is further described in the appropriate section below. Other modules have the ability
to extend this class; examples are noted in section 2.3.8. Module-Specific Declarations

2.3.1 The Project Description

The <projectDesc> element may be used to describe, in prose, the purpose for which a digital resource was
created, together with any other relevant information concerning the process by which it was assembled or
collected. This is of particular importance for corpora or miscellaneous collections, but may be of use for any
text, for example to explain why one kind of encoding practice has been followed rather than another.

<projectDesc> (project description) describes in detail the aim or purpose for which an electronic file was
encoded, together with any other relevant information concerning the process by which it was
assembled or collected.

For example:

<encodingDesc>
<projectDesc>
<p>Texts collected for use in the
Claremont Shakespeare Clinic, June 1990.</p>
</projectDesc>
</encodingDesc>

2.3.2 The Sampling Declaration

The <samplingDecl> element may be used to describe, in prose, the rationale and methods used in selecting
texts, or parts of text, for inclusion in the resource.

<samplingDecl> (sampling declaration) contains a prose description of the rationale and methods used in
sampling texts in the creation of a corpus or collection.

33

2. The TEI Header

It should include information about such matters as

o the size of individual samples

the method or methods by which they were selected
o the underlying population being sampled

« the object of the sampling procedure used

but is not restricted to these.

<samplingDecl>
<p>Samples of 2000 words taken from the beginning of the text.</p>
</samplingDecl>

It may also include a simple description of any parts of the source text included or excluded.

<samplingDecl>
<p>Text of stories only has been transcribed. Pull quotes, captions,
and advertisements have been silently omitted. Any mathematical
expressions requiring symbols not present in the ISOnum or ISOpub
entity sets have been omitted, and their place marked with a GAP
element.</p>
</samplingDecl>

A sampling declaration which applies to more than one text or division of a text need not be repeated in
the header of each such text. Instead, the decls attribute of each text (or subdivision of the text) to which the
sampling declaration applies may be used to supply a cross-reference to it, as further described in section|15.3.
Associating Contextual Information with a Text.

2.3.3 The Editorial Practices Declaration

The <editorialDecl> element is used to provide details of the editorial practices applied during the encoding of
a text.

<editorialDecl> (editorial practice declaration) provides details of editorial principles and practices
applied during the encoding of a text.

It may contain a prose description only, or one or more of a set of specialized elements, members of the
TEI model.editorialDeclPart class. Where an encoder wishes to record an editorial policy not specified above,
this may be done by adding a new element to this class, using the mechanisms discussed in chapter 23.2.
Personalization and Customization.

Some of these policy elements carry attributes to support automated processing of certain well-defined
editorial decisions; all of them contain a prose description of the editorial principles adopted with respect
to the particular feature concerned. Examples of the kinds of questions which these descriptions are intended
to answer are given in the list below.

<correction>

<correction> (correction principles) states how and under what circumstances corrections have

been made in the text.
@status indicates the degree of correction applied to the text.

@method indicates the method adopted to indicate corrections within the text.

Was the text corrected during or after data capture? If so, were corrections made silently or are they marked
using the tags described in section 3.4. Simple Editorial Changes? What principles have been adopted with
respect to omissions, truncations, dubious corrections, alternate readings, false starts, repetitions, etc.?

34

2.3. The Encoding Description

<normalization>

<normalization> indicates the extent of normalization or regularization of the original source
carried out in converting it to electronic form.
@source indicates the authority for any normalization carried out.

@method indicates the method adopted to indicate normalizations within the text.

Was the text normalized, for example by regularizing any non-standard spellings, dialect forms, etc.? If so,
were normalizations performed silently or are they marked using the tags described in section 3.4. Simple
Editorial Changes? What authority was used for the regularization? Also, what principles were used when
normalizing numbers to provide the standard values for the value attribute described in section 3.5.3.
Numbers and Measures and what format used for them?

<quotation>

<quotation> specifies editorial practice adopted with respect to quotation marks in the original.
@marks (quotation marks) indicates whether or not quotation marks have been retained
as content within the text.

@form specifies how quotation marks are indicated within the text.

How were quotation marks processed? Are apostrophes and quotation marks distinguished? How? Are
quotation marks retained as content in the text or replaced by markup? Are there any special conventions
regarding for example the use of single or double quotation marks when nested? Is the file consistent in
its practice or has this not been checked?

<hyphenation>

<hyphenation> summarizes the way in which hyphenation in a source text has been treated in an
encoded version of it.
@eol (end-of-line) indicates whether or not end-of-line hyphenation has been retained in
a text.

Does the encoding distinguish ‘soft’ and ‘hard’ hyphens? What principle has been adopted with respect to
end-of-line hyphenation where source lineation has not been retained? Have soft hyphens been silently
removed, and if so what is the effect on lineation and pagination?

<segmentation>

<segmentation> describes the principles according to which the text has been segmented, for
example into sentences, tone-units, graphemic strata, etc.

How is the text segmented? If <s> or <seg> segmentation units have been used to divide up the text for
analysis, how are they marked and how was the segmentation arrived at?
<stdVals>

<stdVals> (standard values) specifies the format used when standardized date or number values are
supplied.

In most cases, attributes bearing standardized values (such as the when or when-iso attribute on dates)
should conform to a defined W3C or ISO datatype. In cases where this is not appropriate, this element
may be used to describe the standardization methods underlying the values supplied.

<interpretation>

<interpretation> describes the scope of any analytic or interpretive information added to the text in
addition to the transcription.

35

2. The TEI Header

Has any analytic or ‘interpretive’ information been provided — that is, information which is felt to be non-
obvious, or potentially contentious? If so, how was it generated? How was it encoded? If feature-structure
analysis has been used, are <fsdDecl> elements (section 18.11. Feature System Declaration) present?

Any information about the editorial principles applied not falling under one of the above headings should be
recorded in a distinct list of items. Experience shows that a full record should be kept of decisions relating to
editorial principles and encoding practice, both for future users of the text and for the project which produced
the text in the first instance. Some simple examples follow:

<editorialDecl>
<segmentation>
<p>
<gi>s</gi> elements mark orthographic sentences and
are numbered sequentially
within their parent <gi>div</gi> element
</p>
</segmentation>
<interpretation>
<p>The part of speech analysis applied throughout section 4 was
added by hand and has not been checked.</p>
</interpretation>
<correction>
<p>Errors in transcription controlled by using the
WordPerfect spelling checker.</p>
</correction>
<normalization source="http://szotar.sztaki.hu/webster/">
<p>All words converted to Modern American spelling following
Websters 9th Collegiate dictionary.</p>
</normalization>
<quotation marks="all" form="std">
<p>All opening quotation marks represented by entity reference
<ident type="ge">odg</ident>; all closing quotation marks
represented by entity reference <ident type="ge">cdgq</ident>.</p>
</quotation>
</editorialDecl>

An editorial practices declaration which applies to more than one text or division of a text need not be
repeated in the header of each such text. Instead, the decls attribute of each text (or subdivision of the text) to
which it applies may be used to supply a cross-reference to it, as further described in section 15.3. Associating
Contextual Information with a Text.

2.3.4 The Tagging Declaration
The <tagsDecl> element is used to record the following information about the tagging used within a particular
text:
« the namespace to which elements appearing within the transcribed text belong.
+ how often particular elements appear within the text, so that a recipient can validate the integrity of a text
during interchange.
« any comment relating to the usage of particular elements not specified elsewhere in the header.

o a default rendition applicable to all instances of an element.
This information is conveyed by the following elements:

<rendition> supplies information about the rendition or appearance of one or more elements in the source
text.

36

2.3. The Encoding Description

@scheme identifies the language used to describe the rendition.

<namespace> supplies the formal name of the namespace to which the elements documented by its
children belong.

<tagUsage> supplies information about the usage of a specific element within a text.

The <tagsDecl> element consists of an optional sequence of <rendition> elements, each of which must bear
a unique identifier, followed by an optional sequence of one or more <namespace> elements, each of which
contains a series of <tagUsage> elements, one for each distinct element from that namespace occurring within
the outermost <text> element of a TEI document. Note that these <tagUsage> elements must be nested within
a <namespace> element, and cannot appear directly within the <tagsDecl> element.

2.3.4.1 Rendition

The <rendition> element allows the encoder to specify how one or more elements are rendered in the original
source in any of the following ways:

« using an informal prose description
« using a standard stylesheet language such as CSS or XSL-FO

« using a project-defined formal language
One or more such specifications may be associated with elements of a document in two ways:

o the render attribute of the appropriate <tagUsage> element may be used to indicate a default rendition for
all occurrences of the named element

« the global rendition attribute may be used on any element to indicate its rendition, over-riding any supplied
default value

The global rend attribute may also be used to supply an informal description of the rendering for an element;
if this is supplied in addition to the rendition attribute it takes precedence, just as it also overrides any default
specified for that element.

For example, the following schematic shows how an encoder might specify that all <p> elements are by
default to be rendered using one set of specifications identified as stylel, while <hi> elements are to use a
different set, identified as style2:

<tagsDecl>
<rendition xml:id="stylel">
. description of one default rendition here ...
</rendition>
<rendition xml:id="style2">
. description of another default rendition here ...

</rendition>
<namespace name="http://www.tei-c.org/ns/1.0">
<tagUsage gi="p" render="#stylel"> ... </tagUsage>
<tagUsage gi="hi" render="#style2"> ... </tagUsage>
</namespace>
</tagsDecl>
<!-- elsewhere in the document -->

<p>This paragraph,mostly rendered in stylel, contains a few words
<hi>rendered in style2</hi>

</p>

<p rendition="#style2">This paragraph is all rendered in style2</p>
<p>This is back to stylel</p>

As noted above, the content of the <rendition> element may describe the appearance of the source material
using prose, a project-defined formal language, or either of the existing standard languages: the Cascading

37

2. The TEI Header

Stylesheet Language (Lie and Bos (eds.) (1999)) and the XML vocabulary for specifying formatting semantics
which forms a part of the W3C's Extensible Stylesheet Language (Berglund (ed.) (2006)). The scheme attribute
indicates which of these applies to a given <rendition> element, and takes the following values:

free Informal free text description

css Cascading Stylesheet Language

xslfo Extensible Stylesheet Language Formatting Objects
other A user-defined formal description language

In the following extended example we consider how to capture the appearance of a typical early 20th century
titlepage, such as that in the following figure: Elements for the encoding of the information on a titlepage are

THE POEMS

OF

ALGERNON CHARLES SWINBURNE

IN SIX VOLUMES

VOLUME L
POEMS AND BALLADS

FIRST SERIES

LONDON
CHATTO & WINDUS
1004

presented in 4.6. Title Pages; here we consider how we might go about encoding some of the visual information
as well, using the <rendition> element and its corresponding attributes.

First we define a rendition element for each aspect of the source page rendition that we wish to retain. Details
of CSS are given in Lie and Bos (eds.) (1999); we use it here simply to provide a vocabulary with which to
describe such aspects as font size and style, letter and line spacing, colour, etc. Note that the purpose of this

38

2.3. The Encoding Description

encoding is to describe the original, rather than specify how it should be reproduced, although the two are

obviously closely linked.

<tagsDecl>
<rendition
<rendition
<rendition
<rendition
<rendition
<rendition
<rendition
<rendition
<rendition

</tagsDecl>

id="center"
id="small"

id="large"

id="x-large"
id="xx-large"
id="expanded"
id="x-space"
id="xx-space"
id="red" scheme="css">color:

xml:
xml:
xml:
xml:
xml:
xml:
xml:
xml:
xml:

scheme="css">text-align: center;</rendition>
scheme="css">font-size: small;</rendition>
scheme="css">font-size: large;</rendition>
scheme="css">font-size: x-large;</rendition>
scheme="css">font-size:
scheme="css">letter-spacing:
scheme="css">line-height: 150%;</rendition>
scheme="css">line-height: 200%;</rendition>
red;</rendition>

xx-large</rendition>
+3pt;</rendition>

The global rendition attribute can now be used to specify on any element which of the above rendition

features apply to it. For example, a title page might be encoded as follows:

<titlePage>
<docTitle rendition="#center #x-space">
<titlePart>
<lb/>
<hi rendition="#x-large">THE POEMS</hi>
<lb/>
<hi rendition="#small">0F</hi>
<lb/>
<hi rendition="#red #xx-large">ALGERNON CHARLES SWINBURNE</hi>
<lb/>
<hi rendition="#large #xx-space">IN SIX VOLUMES</hi>
</titlePart>
<titlePart rendition="#xx-space">
<lb/> VOLUME I.
<lb/>
<hi rendition="#red #x-large">POEMS AND BALLADS</hi>
<lb/>
<hi rendition="#x-space">FIRST SERIES</hi>
</titlePart>
</docTitle>
<docImprint
<lb/>
<pubPlace
<lb/>
<publisher
<lb/>
<docDate when="1904"
</docImprint>
</titlePage>

rendition="#center">
rendition="#xx-space">LONDON</pubPlace>
rendition="#red #expanded">CHATTO & WINDUS</publisher>

rendition="#small">1904</docDate>

Source: [|200]]

When CSS is used as the underlying language, the scope attribute may be used to specify CSS pseudo-
elements. These pseudo-elements are used to target styling for only a portion of the given text. For example,
thereisa first-letter pseudo-element to target styling of the first letter in the targeted element, while there
are the useful before and after pseudo-elements, used often in conjunction with the "content" property to
add some styling characters (Unicode provides quite a few) before or after the element content, where these

are useful to document the appearance of the source.

39

2. The TEI Header

For example, assuming that a text has been encoded using the <q> element to enclose passages in quotation
marks, but the quotation marks themselves have been routinely omitted from the encoding, a set of renditions
such as the following:

<rendition xml:id="quoteBefore" scheme="css" scope="before">content:
'“':</rendition>

<rendition xml:id="quoteAfter" scheme="css" scope="after">content:
'"'.</rendition>

might be used to predefine pseudo-elements quoteBefore and quoteAfter. Where a <q> element is actually
rendered in the source with initial and final quotation marks, it may then be encoded as follows:

<q rendition="#quoteBefore #quoteAfter">Four score and seven years
ago...</q>

2.3.4.2 Tagusage

As noted above, each <namespace> element, if present, should contain exactly one occurrence of a <tagUsage>
element for each distinct element from the given namespace that occurs within the outermost <text> element
associated with the <teiHeader> in which it appears.* The <tagUsage> element is used to supply a count of the
number of occurrences of this element within the text, which is given as the value of its occurs attribute. It may
also be used to hold any additional usage information, which is supplied as running prose within the element
itself.

For example:

<tagUsage gi="hi" occurs="28"> Used only to mark English words italicised in the copy text.
</tagUsage>

This indicates that the <hi> element appears a total of 28 times in the <text> element in question, and that the
encoder has used it to mark italicised English words only.

The withId attribute may optionally be used to specify how many of the occurrences of the element in
question bear a value for the global xml:id attribute, as in the following example:

<tagUsage gi="pb" occurs="321" withId="321"> Marks page breaks in the York (1734) edition only
</tagUsage>

This indicates that the <pb> element occurs 321 times, on each of which an identifier is provided.

The content of the <tagUsage> element is not susceptible of automatic processing. It should not therefore be
used to hold information for which provision is already made by other components of the encoding description.
A TEI conformant document is not required to provide any <tagUsage> elements, but if it does, then TEI
recommended practice is to provide <namespace> and <tagUsage> elements for each distinct element and
namespace used in the associated text. If, in addition, counts are specified by the occurs attributes, these must
correspond with the number of such elements present in the document.

“In the case of a TEI corpus (15. Language Corpora), a <tagsDecl> in a corpus header will describe tag usage across the whole corpus, while one in
an individual text header will describe tag usage for the individual text concerned.

40

2.3. The Encoding Description

2.3.5 The Reference System Declaration

The <refsDecl> element is used to document the way in which any standard referencing scheme built into the
encoding works. It may contain either a series of prose paragraphs or the following specialized elements:

<refsDecl> (references declaration) specifies how canonical references are constructed for this text.

<cRefPattern> (canonical reference pattern) specifies an expression and replacement pattern for
transforming a canonical reference into a URI.

<refState/> (reference state) specifies one component of a canonical reference defined by the milestone
method.

Note that not all possible referencing schemes are equally easily supported by current software systems. A
choice must be made between the convenience of the encoder and the likely efficiency of the particular software
applications envisaged, in this context as in many others. For a more detailed discussion of referencing systems
supported by these Guidelines, see section 3.10. Reference Systems below.

A referencing scheme may be described in one of three ways using this element:

« asa prose description
« as a series of pairs of regular expressions and XPaths

« asa concatenation of sequentially organized milestones

Each method is described in more detail below. Only one method can be used within a single <refsDecl>
element.

More than one <refsDecl> element can be included in the header if more than one canonical reference
scheme is to be used in the same document, but the current proposals do not check for mutual inconsistency.

2.3.5.1 Prose Method

The referencing scheme may be specified within the <refsDecl> by a simple prose description. Such a
description should indicate which elements carry identifying information, and whether this information is
represented as attribute values or as content. Any special rules about how the information is to be interpreted
when reading or generating a reference string should also be specified here. Such a prose description cannot be
processed automatically, and this method of specifying the structure of a canonical reference system is therefore
not recommended for automatic processing.

For example:

<refsDecl>
<p>The <att>n</att> attribute of each text in this corpus carries a
unique identifying code for the whole text. The title of the text is
held as the content of the first <gi>head</gi> element within each
text. The <att>n</att> attribute on each <gi>divl</gi> and
<gi>div2</gi> contains the canonical reference for each such
division, in the form 'XX.yyy', where XX is the book number in Roman
numerals, and yyy the section number in arabic. Line breaks are
marked by empty <gi>lb</gi> elements, each of which includes the
through line number in Casaubon's edition as the value of its
<gi>n</gi> attribute.</p>
<p>The through line number and the text identifier uniquely identify
any line. A canonical reference may be made up by concatenating the
<gi>n</gi> values from the <gi>text</gi>, <gi>divl</gi>, or
<gi>div2</gi> and calculating the line number within each part.</p>
</refsDecl>

41

2. The TEI Header

2.3.5.2 Search-and-Replace Method

This method often requires a significant investment of effort initially, but permits extremely flexible addressing.
For details, see section 16.2.5. Canonical References.

<cRefPattern> (canonical reference pattern) specifies an expression and replacement pattern for
transforming a canonical reference into a URL.

2.3.5.3 Milestone Method

This method is appropriate when only ‘milestone’ tags (see section 3.10.3. Milestone Elements) are available to
provide the required referencing information. It does not provide any abilities which cannot be mimicked by
the search-and-replace referencing method discussed in the previous section, but in the cases where it applies,
it provides a somewhat simpler notation.

A reference based on milestone tags concatenates the values specified by one or more such tags. Since each tag
marks the point at which a value changes, it may be regarded as specifying the refState of a variable. A reference
declaration using this method therefore specifies the individual components of the canonical reference as a
sequence of <refState> elements:

<refState/> (reference state) specifies one component of a canonical reference defined by the milestone
method.
@unit indicates what kind of state is changing at this milestone.

@delim (delimiter) supplies a delimiting string following the reference component.
@length specifies the fixed length of the reference component.

For example, the reference ‘Matthew 12:34” might be thought of as representing the state of three variables:
the book variable is in state ‘Matthew’; the chapter variable is in state ‘12’ and the verse variable is in state ‘34’
If milestone tagging has been used, there should be a tag marking the point in the text at which each of the
above ‘variables’ changes its state.” To find ‘Matthew 12:34’ therefore an application must scan left to right
through the text, monitoring changes in the state of each of these three variables as it does so. When all three
are simultaneously in the required state, the desired point will have been reached. There may of course be
several such points.

The delim and length attributes are used to specify components of a canonical reference using this method
in exactly the same way as for the stepwise method described in the preceding section. The other attributes are
used to determine which instances of <milestone> tags in the text are to be checked for state-changes. A state-
change is signalled whenever a new <milestone> tag is found with unit and, optionally, ed attributes identical
to those of the <refState> element in question. The value for the new state may be given explicitly by the n
attribute on the <milestone> element, or it may be implied, if the n attribute is not specified.

For example, for canonical references in the form xx.yyy where the xx represents the page number in the first
edition, and yyy the line number within this page, a reference system declaration such as the following would
be appropriate:

<refsDecl>
<refState
ed="first"
unit="page"
length="2"
delim="."/>
<refState ed="first" wunit="1line" Tlength="3"/>
</refsDecl>

This implies that milestone tags of the form

50n the <milestone> tag itself, what are here referred to as ‘variables’ are identified by the combination of the ed and unit attributes.

42

2.3. The Encoding Description

<milestone n="II" ed="first" unit="page"/>
<milestone ed="first" unit="line"/>

will be found throughout the text, marking the positions at which page and line numbers change. Note that
no value has been specified for the n attribute on the second milestone tag above; this implies that its value at
each state change is monotonically increased. For more detail on the use of milestone tags, see section 3.10.3.
Milestone Elements.

The milestone referencing scheme, though conceptually simple, is not supported by a generic SGML or XML
parser. Its use places a correspondingly greater burden of verification and accuracy on the encoder.

A reference system declaration which applies to more than one text or division of a text need not be repeated
in the header of each such text. Instead, the decls attribute of each text (or subdivision of the text) to which the
declaration applies may be used to supply a cross-reference to it, as further described in section 15.3. Associating
Contextual Information with a Text.

2.3.6 The Classification Declaration

The <classDecl> element is used to group together definitions or sources for any descriptive classification
schemes used by other parts of the header. Each such scheme is represented by a <taxonomy> element, which
may contain either a simple bibliographic citation, or a definition of the descriptive typology concerned; the
following elements are used in defining a descriptive classification scheme:

<classDecl> (classification declarations) contains one or more taxonomies defining any classificatory
codes used elsewhere in the text.

<taxonomy> defines a typology used to classify texts either implicitly, by means of a bibliographic citation,
or explicitly by a structured taxonomy.

<category> contains an individual descriptive category, possibly nested within a superordinate category,
within a user-defined taxonomy.

<catDesc> (category description) describes some category within a taxonomy or text typology, either in
the form of a brief prose description or in terms of the situational parameters used by the TEI formal
textDesc.

The <taxonomy> element has two slightly different, but related, functions. For well-recognized and
documented public classification schemes, such as Dewey or other published descriptive thesauri, it contains
simply a bibliographic citation indicating where a full description of a particular taxonomy may be found.

<taxonomy xml:id="ddc12">
<bibl>
<title>Dewey Decimal Classification</title>
<edition>Abridged Edition 12</edition>
</bibl>
</taxonomy>

For less easily accessible schemes, the <taxonomy> element contains a description of the taxonomy itself as
well as an optional bibliographic citation. The description consists of a number of <category> elements, each
defining a single category within the given typology. The category is defined by the contents of a nested
<catDesc> element, which may contain either a phrase describing the category, or any number of elements
from the model.catDescPart class. When the corpus module is included in a schema, this class provides the
<textDesc> element whose components allow the definition of a text type in terms of a set of ‘situational
parameters’ (see further section 15.2.1. The Text Description; if the corpus module is not included in a schema,
this class is empty and the <catDesc> element may contain only plain text.

43

2. The TEI Header

If the category is subdivided, each subdivision is represented by a nested <category> element, having the
same structure. Categories may be nested to an arbitrary depth in order to reflect the hierarchical structure
of the taxonomy. Each <category> element bears a unique xml:id attribute, which is used as the target for
<catRef> elements referring to it.

<taxonomy xml:id="b">
<bibl1>Brown Corpus</bibl>
<category xml:id="b.a">
<catDesc>Press Reportage</catDesc>
<category xml:id="b.al">
<catDesc>Daily</catDesc>
</category>
<category xml:id="b.a2">
<catDesc>Sunday</catDesc>
</category>
<category xml:id="b.a3">
<catDesc>National</catDesc>
</category>
<category xml:id="b.a4">
<catDesc>Provincial</catDesc>
</category>
<category xml:id="b.a5">
<catDesc>Political</catDesc>
</category>
<category xml:id="b.a6">
<catDesc>Sports</catDesc>
</category>
</category>
<category xml:id="b.d">
<catDesc>Religion</catDesc>
<category xml:id="b.d1">
<catDesc>Books</catDesc>
</category>
<category xml:id="b.d2">
<catDesc>Periodicals and tracts</catDesc>
</category>
</category>
</taxonomy>

Linkage between a particular text and a category within such a taxonomy is made by means of the <catRef>
element within the <textClass> element, as described in section 2.4.3. The Text Classification. Where the
taxonomy permits of classification along more than one dimension, more than one category will be referenced
by a particular <catRef>, as in the following example, which identifies a text with the sub-categories ‘Daily,
‘National, and ‘Political’ within the category ‘Press Reportage’ as defined above.

<catRef target="#b.al #b.a3 #b.a5"/>

2.3.7 The Application Information Element

It is sometimes convenient to store information relating to the processing of an encoded resource within its
header. Typical uses for such information might be:

o to allow an application to discover that it has previously opened or edited a file, and what version of itself
was used to do that;

44

2.3. The Encoding Description

« to show (through a date) which application last edited the file to allow for diagnosis of any problems that
might have been caused by that application;

« to allow users to discover information about an application used to edit the file

o to allow the application to declare an interest in elements of the file which it has edited, so that other
applications or human editors may be more wary of making changes to those sections of the file.

The class model.applicationLike provides an element, <application>, which may be used to record such
information within the <appInfo> element.
<applinfo> (application information) records information about an application which has edited the TEI
file.

<application> provides information about an application which has acted upon the document.
@ident Supplies an identifier for the application, independent of its version number or display
name.
@version Supplies a version number for the application, independent of its identifier or display
name.

Each <application> element identifies the current state of one software application with regard to the current
file. This element is a member of the att.datable class, which provides a variety of attributes for associating this
state with a date and time, or a temporal range. The ident and version attributes should be used to uniquely
identify the application and its major version number (for example, ImageMarkupTool 1.5). It is not intended
that an application should add a new <application> each time it touches the file.

The following example shows how these elements might be used to document the fact that version 1.5 of an
application called Tmage Markup Tool has an interest in two parts of a document which was last saved on June
6 2006. The parts concerned are accessible at the URLs given as target for the two <ptr> elements.

<appInfo>

<application version="1.5" ident="ImageMarkupTool" notAfter="2006-06-01">
<label>Image Markup Tool</label>
<ptr target="#P1"/>
<ptr target="#P2"/>

</application>

</appInfo>

2.3.8 Module-Specific Declarations

The elements discussed so far are available to any schema. When the schema in use includes some of the
more specialised TEI modules, these make available other more module-specific components of the encoding
declaration. These are discussed fully in the documentation for the module in question, but are also noted
briefly here for convenience.

The <fsdDecl> element is available only when the iso-fs module is included in a schema. Its purpose is to
document the feature system declaration (as defined in chapter 18.11. Feature System Declaration) underlying any
analytic feature structures (as defined in chapter 18. Feature Structures) present in the text documented by this
header.

The <metDecl> element is available only when the verse module is included in a schema. Its purpose is
to document any metrical notation scheme used in the text, as further discussed in section 6.3. Rhyme and
Metrical Analysis. It consists either of a prose description or a series of <metSym> elements.

The <variantEncoding> element is available only when the textcrit module is included in a schema. Its
purpose is to document the method used to encode textual variants in the text, as discussed in section 12.2.
Linking the Apparatus to the Text.

45

2. The TEI Header

2.4 The Profile Description

The <profileDesc> element is the third major subdivision of the TEI Header. It is an optional element, the
purpose of which is to enable information characterizing various descriptive aspects of a text or a corpus to be
recorded within a single unified framework.

<profileDesc> (text-profile description) provides a detailed description of non-bibliographic aspects of a
text, specifically the languages and sublanguages used, the situation in which it was produced, the
participants and their setting.

In principle, almost any component of the header might be of importance as a means of characterizing a
text. The author of a written text, its title or its date of publication, may all be regarded as characterizing it
at least as strongly as any of the parameters discussed in this section. The rule of thumb applied has been to
exclude from discussion here most of the information which generally forms part of a standard bibliographic
style description, if only because such information has already been included elsewhere in the TEI header.

The core <profileDesc> element has three optional components, represented by the following elements:

<creation> contains information about the creation of a text.

<langUsage> (language usage) describes the languages, sublanguages, registers, dialects, etc. represented
within a text.

<textClass> (text classification) groups information which describes the nature or topic of a text in terms
of a standard classification scheme, thesaurus, etc.

These elements are further described in the remainder of this section.
Three other elements may also appear within the <profileDesc> element when the corpus module described
in chapter 15. Language Corpora is included in a schema:

<textDesc> (text description) provides a description of a text in terms of its situational parameters.

<particDesc> (participation description) describes the identifiable speakers, voices, or other participants
in a linguistic interaction.

<settingDesc> (setting description) describes the setting or settings within which a language interaction
takes place, either as a prose description or as a series of setting elements.

For descriptions of these elements, see section 15.2. Contextual Information.
The following element can appear in the <profileDesc> element when the transcr module for the transcription
of primary sources described in chapter 11. Representation of Primary Sources is included in a schema:

<handNotes> contains one or more <handNote> elements documenting the different hands identified
within the source texts.

For a description of this element, see section 11.4.1. Document Hands. Its purpose is to group together a
number of <handNote> elements, each of which describes a different hand or equivalent identified within a
manuscript. The <handNote> element can also appear within a structured manuscript description, when the
msdescription module described in chapter 10. Manuscript Descriptionis included in a schema. For this reason,
the <handNote> element is actually declared within the header module, but is only accessible to a schema
when one or other of the transcr or msdescription modules is included in a schema. See further the discussion
at 11.4.1. Document Hands.

2.4.1 Creation

The <creation> element contains phrases describing the origin of the text, e.g. the date and place of its
composition.

<creation> contains information about the creation of a text.

46

2.4. The Profile Description

The date and place of composition are often of particular importance for studies of linguistic variation; since
such information cannot be inferred with confidence from the bibliographic description of the copy text, the
<creation> element may be used to provide a consistent location for this information:

<creation>
<date when="1992-08">August 1992</date>
<rs type="city">Taos, New Mexico</rs>
</creation>

24.2 Language Usage
The <langUsage> element is used within the <profileDesc> element to describe the languages, sublanguages,
registers, dialects, etc. represented within a text. It contains one or more <language> elements, each of which
provides information about a single language, notably the quantity of that language present in the text. Note
that this element should not be used to supply information about any non-standard characters or glyphs used
by this language; such information should be recorded in the <charDecl> element in the encoding description
(see further 5. Representation of Non-standard Characters and Glyphs).
<langUsage> (language usage) describes the languages, sublanguages, registers, dialects, etc. represented
within a text.
<language> characterizes a single language or sublanguage used within a text.
@usage specifies the approximate percentage (by volume) of the text which uses this language.
@ident (identifier) Supplies a language code constructed as defined in BCP 47 which is used to
identify the language documented by this element, and which is referenced by the global
xml:lang attribute.

A <language> element may be supplied for each different language used in a document. If used, its
ident attribute should specify an appropriate language identifier, as further discussed in section vi.I Language
identification. 'This is particularly important if extended language identifiers have been used as the value of
xml:lang attributes elsewhere in the document.

Here is an example of the use of this element:

<langUsage>
<language ident="fr-CA" usage="60">Québecois</language>
<language ident="en-CA" usage="20">Canadian business English</language>
<language ident="en-GB" usage="20">British English</language>
</langUsage>

2.4.3 The Text Classification

The second component of the core <profileDesc> element is the <textClass> element. This element is used to

classify a text according to one or more of the following methods:

by reference to a recognized international classification such as the Dewey Decimal Classification, the
Universal Decimal Classification, the Colon Classification, the Library of Congress Classification, or any
other system widely used in library and documentation work

« by providing a set of keywords, as provided for example by British Library or Library of Congress Catalogu-
ing in Publication data

o by referencing any other taxonomy of text categories recognized in the field concerned, or peculiar to the
material in hand; this may include one based on recurring sets of values for the situational parameters
defined in section 15.2.1. The Text Description, or the demographic elements described in section |15.2.2.
The Participant Description

47

http://tools.ietf.org/html/bcp47

2. The TEI Header

The last of these may be particularly important for dealing with existing corpora or collections, both as
a means of avoiding the expense or inconvenience of reclassification and as a means of documenting the
organizing principles of such materials.

The following elements are provided for this purpose:

<keywords> contains a list of keywords or phrases identifying the topic or nature of a text.

@scheme identifies the controlled vocabulary within which the set of keywords concerned is
defined.

<classCode> (classification code) contains the classification code used for this text in some standard
classification system.
@scheme identifies the classification system or taxonomy in use.

<catRef/> (category reference) specifies one or more defined categories within some taxonomy or text

typology.
@target identifies the categories concerned

The <keywords> element simply categorizes an individual text by supplying a list of keywords which may
describe its topic or subject matter, its form, date, etc. In some schemes, the order of items in the list is
significant, for example, from major topic to minor; in others, the list has an organized substructure of its own.
No recommendations are made here as to which method is to be preferred. Wherever possible, such keywords
should be taken from a recognized source, such as the British Library/Library of Congress Cataloguing in
Publication data in the case of printed books, or a published thesaurus appropriate to the field.

The scheme attribute should be used to indicate the source of the keywords used. This is done by supplying
the value used for the xml:id attribute of a <taxonomy> element within which further details of the source
concerned may be found. The <taxonomy> element occurs in the <classDecl> part of the encoding declarations
within the TEI Header and is described in section 2.3.6. The Classification Declaration. For example:

<keywords scheme="#lcsh">
<list>
<item>Data base management</item>
<item>SQL (Computer program language)</item>
</list>
</keywords>

<keywords scheme="#lcsh">

<list>
<item>English literature -- History and criticism -- Data processing.</item>
<item>English literature -- History and criticism -- Theory, etc.</item>
<item>English language -- Style -- Data processing.</item>
<item>Style, Literary -- Data processing.</item>
</list>
</keywords>

The <classCode> element also categorizes an individual text, by supplying a numerical or other code used in
a recognized classification scheme, such as the Dewey Decimal Classification. The scheme attribute is used to
indicate the source of the classification scheme: this may be a pointer of any kind, either to a TEI element, likely
in the current document, as in the <keywords> examples above, or to some canonical source for the scheme,
as in the following example:

48

2.5. The Revision Description

<classCode scheme="http://www.example.com/udc">005.756</classCode>
<classCode scheme="#1c">QA76.9</classCode>

<classCode scheme="http://www.example.com/udc">820.285</classCode>

The <catRef> element categorizes an individual text by pointing to one or more <category> elements. The
<category> element (which is fully described in section 2.3.6. The Classification Declaration) holds information
about a particular classification or category within a given taxonomy. Each such category must have a unique
identifier, which may be supplied as the value of the target attribute for <catRef> elements which are regarded
as falling within the category indicated.

A text may, of course, fall into more than one category, in which case more than one identifier will be supplied
as the value for the target attribute on the <catRef> element, as in the following example:

<catRef target="#b.ad4 #b.d2"/>

The scheme attribute may be supplied to specify the taxonomy to which the categories identified by the target
attribute belong, if this is not adequately conveyed by the resource pointed to. For example,

<catRef
target="#b.a4 #b.d2"
scheme="http://www.example.com/browncorpus"/>
<catRef target="http://www.example.com/SUC/#A45"/>

Here the same text has been classified as of categories b.a4 and b.d2 within the Brown classification scheme
(presumed to be available from http://www.example.com/browncorpus), and as of category ‘A45’ within the SUC
classification scheme documented at the URL given.

The distinction between the <catRef> and <classCode> elements is that the values used as identifying codes
are exhaustively enumerated, typically with the header, for the former, while the latter may be used to indicate
a more open ended or descriptive classification system.

2.5 The Revision Description

The final sub-element of the TEI header, the <revisionDesc> element, provides a detailed change log in which
each change made to a text may be recorded. Its use is optional but highly recommended. It provides essential
information for the administration of large numbers of files which are being updated, corrected, or otherwise
modified as well as extremely useful documentation for files being passed from researcher to researcher or
system to system. Without change logs, it is easy to confuse different versions of a file, or to remain unaware
of small but important changes made in the file by some earlier link in the chain of distribution. No change
should be made in any TEI-conformant file without corresponding entries being made in the change log.

<revisionDesc> (revision description) summarizes the revision history for a file.

<change> summarizes a particular change or correction made to a particular version of an electronic text

which is shared between several researchers.

The main purpose of the revision description is to record changes in the text to which a header is prefixed.
However, it is recommended TEI practice to include entries also for significant changes in the header itself
(other than the revision description itself, of course). At the very least, an entry should be supplied indicating
the date of creation of the header.

49

2. The TEI Header

2.6

The log consists of a list of entries, one for each change. This may be encoded using either the regular <list>
element, as described in section 3.7. Lists or as a series of special purpose <change> elements, each of which
contains a more detailed description of the changes made. The attributes when and who are used to indicate
the date of the change and the person responsible for it respectively. The description of the change itself can
range from a simple phrase to a series of paragraphs. If a number is to be associated with one or more changes
(for example, a revision number), the global n attribute may be used to indicate it.

It is recommended to give changes in reverse chronological order, most recent first.

For example:

<titleStmt>
<title>The Amorous Prince, or, the Curious Husband, 1671</title>
<author>
<persName ref="#abehn.aeh">Behn, Aphra</persName>
</author>

<respStmt xml:id="pcaton.xzc">
<persName>Caton, Paul</persName>
<resp>electronic publication editor</resp>
</respStmt>
<respStmt xml:id="wgui.ner">
<persName>Gui, Weihsin</persName>
<resp>encoder</resp>
</respStmt>
<respStmt xml:id="jwernimo.lrv">
<persName>Wernimont, Jacqueline</persName>
<resp>encoder</resp>
</respStmt>
</titleStmt>
<l-- ... -->
<revisionDesc>
<change n="RCS:1.39" when="2007-08-08" who="#jwernimo.lrv">Changed <val>drama.verse</val>
<gi>lg</gi>s to <gi>p</gi>s. <note>we have opened a discussion about the need for a new
value for <att>type</att> of <gi>lg</gi>, <val>drama.free.verse</val>, in order to address
the verse of Behn which is not in regular iambic pentameter. For the time being these
instances are marked with a comment note until we are able to fully consider the best way
to encode these instances.</note>
</change>
<change n="RCS:1.33" when="2007-06-28" who="#pcaton.xzc">Added <att>key</att> and <att>reg</att>
to <gi>name</gi>s.</change>
<change n="R(CS:1.31" when="2006-12-04" who="#wgui.ner">Completed renovation. Validated.</change>
</revisionDesc>

In the above example, the who attributes point to <respStmt> elements; they could equally well point to
<person> elements.

Minimal and Recommended Headers

The TEI header allows for the provision of a very large amount of information concerning the text itself, its
source, its encodings, and revisions of it, as well as a wealth of descriptive information such as the languages
it uses and the situation(s) in which it was produced, together with the setting and identity of participants
within it. This diversity and richness reflects the diversity of uses to which it is envisaged that electronic texts
conforming to these Guidelines will be put. It is emphatically not intended that all of the elements described
above should be present in every TEI Header.

The amount of encoding in a header will depend both on the nature and the intended use of the text. At one
extreme, an encoder may expect that the header will be needed only to provide a bibliographic identification of

50

2.6. Minimal and Recommended Headers

the text adequate to local needs. At the other, wishing to ensure that their texts can be used for the widest range
of applications, encoders will want to document as explicitly as possible both bibliographic and descriptive
information, in such a way that no prior or ancillary knowledge about the text is needed in order to process
it. The header in such a case will be very full, approximating to the kind of documentation often supplied in
the form of a manual. Most texts will lie somewhere between these extremes; textual corpora in particular will
tend more to the latter extreme. In the remainder of this section we demonstrate first the minimal, and next a
commonly recommended, level of encoding for the bibliographic information held by the TEI header.

Supplying only the minimal level of encoding required, the TEI header of a single text might look like the
following example:

<teiHeader>
<fileDesc>
<titleStmt>
<title>Thomas Paine: Common sense, a
machine-readable transcript</title>
<respStmt>
<resp>compiled by</resp>
<name>Jon K Adams</name>
</respStmt>
</titleStmt>
<publicationStmt>
<distributor>0xford Text Archive</distributor>
</publicationStmt>
<sourceDesc>
<bib1>The complete writings of Thomas Paine, collected and edited
by Phillip S. Foner (New York, Citadel Press, 1945)</bibl>
</sourceDesc>
</fileDesc>
</teiHeader>

The only mandatory component of the TEI Header is the <fileDesc> element. Within this, <titleStmt>,
<publicationStmt>, and <sourceDesc> are all required constituents. Within the title statement, a title is
required, and an author should be specified, even if it is unknown, as should some additional statement of
responsibility, here given by the <respStmt> element. Within the <publicationStmt>, a publisher, distributor,
or other agency responsible for the file must be specified. Finally, the source description should contain at the
least a loosely structured bibliographic citation identifying the source of the electronic text if (as is usually the
case) there is one.

We now present the same example header, expanded to include additionally recommended information,
adequate to most bibliographic purposes, in particular to allow for the creation of an AACR2-conformant
bibliographic record. We have also added information about the encoding principles used in this (imaginary)
encoding, about the text itself (in the form of Library of Congress subject headings), and about the revision of
the file.

<teiHeader>
<fileDesc>
<titleStmt>
<title>Common sense, a machine-readable transcript</title>
<author>Paine, Thomas (1737-1809)</author>
<respStmt>
<resp>compiled by</resp>
<name>Jon K Adams</name>
</respStmt>

51

2. The TEI Header

</titleStmt>
<editionStmt>
<edition>
<date>1986</date>
</edition>
</editionStmt>
<publicationStmt>
<distributor>0xford Text Archive.</distributor>
<address>
<addrLine>0xford University Computing Services,</addrLine>
<addrLine>13 Banbury Road,</addrLine>
<addrLine>0xford 0X2 6RB,</addrLine>
<addrLine>UK</addrLine>
</address>
</publicationStmt>
<notesStmt>
<note>Brief notes on the text are in a
supplementary file.</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<monogr>
<editor>Foner, Philip S.</editor>
<title>The collected writings of Thomas Paine</title>
<imprint>
<pubPlace>New York</pubPlace>
<publisher>Citadel Press</publisher>
<date>1945</date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<samplingDecl>
<p>Editorial notes in the Foner edition have not
been reproduced. </p>
<p>Blank lines and multiple blank spaces, including paragraph
indents, have not been preserved. </p>
</samplingDecl>
<editorialDecl>
<correction status="high" method="silent">
<p>The following errors
in the Foner edition have been corrected:
<list>
<item>p. 13 1. 7 cotemporaries contemporaries </item>
<item>p. 28 1. 26 [comma] [period] </item>
<item>p. 84 1. 4 kin kind </item>
<item>p. 95 1. 1 stuggle struggle </item>
<item>p. 101 1. 4 certainy certainty </item>
<item>p. 167 1. 6 than that </item>
<item>p. 209 1. 24 publshed published </item>
</list>
</p>
</correction>
<normalization>
<p>No normalization beyond that performed

52

2.6. Minimal and Recommended Headers

by Foner, if any. </p>
</normalization>
<quotation marks="all" form="std">
<p>All double quotation marks

rendered with ", all single quotation marks with
apostrophe. </p>
</quotation>

<hyphenation eol="none">
<p>Hyphenated words that appear at the
end of the line in the Foner edition have been reformed.</p>
</hyphenation>
<stdVals>
<p>The values of <att>when-iso</att> on the <gi>time</gi>
element always end in the format <val>HH:MM</val> or
<val>HH</val>; i.e., seconds, fractions thereof, and time
zone designators are not present.</p>
</stdvals>
<interpretation>
<p>Compound proper names are marked. </p>
<p>Dates are marked. </p>
<p>Italics are recorded without interpretation. </p>
</interpretation>
</editorialDecl>
<classDecl>
<taxonomy xml:id="1lcsh">
<bibl>Library of Congress Subject Headings</bibl>
</taxonomy>
<taxonomy xml:id="1c">
<bibl>Library of Congress Classification</bibl>
</taxonomy>
</classDecl>
</encodingDesc>
<profileDesc>
<creation>
<date>1774</date>
</creation>
<langUsage>
<language ident="en" usage="100">English.</language>
</langUsage>
<textClass>
<keywords scheme="#lcsh">
<list>
<item>Political science</item>
<item>United States -- Politics and government —
Revolution, 1775-1783</item>
</list>
</keywords>
<classCode scheme="#1c">JC 177</classCode>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1996-01-22">
<name>CMSMcQ</name> finished proofreading
</change>
<change when="1995-10-30">
<name>L.B. </name> finished proofreading
</change>

53

2. The TEI Header

2.7

2.8

<change when="1995-07-20">
<name>R.G. </name> finished proofreading
</change>
<change when="1995-07-04">
<name>R.G. </name> finished data entry
</change>
<change when="1995-01-15">
<name>R.G. </name> began data entry
</change>
</revisionDesc>
</teiHeader>

Many other examples of recommended usage for the elements discussed in this chapter are provided here,
in the reference index and in the associated tutorials.

Note for Library Cataloguers

A strong motivation in preparing the material in this chapter was to provide in the TEI file header a viable chief
source of information for cataloguing computer files. The file header is not a library catalogue record, and so
will not make all of the distinctions essential in standard library work. It also includes much information
generally excluded from standard bibliographic descriptions. It is the intention of the developers, however,
to ensure that the information required for a catalogue record be retrievable from the TEI file header, and
moreover that the mapping from the one to the other be as simple and straightforward as possible. Where
the correspondence is not obvious, it may prove useful to consult one of the works which were influential in
developing the content of the TEI file header. These include:

ISBD(G) The International Standard Book Description (General) is an international standard setting out what
information should be recorded in a description of a bibliographical item. There are also separate ISBDs
covering different types of material, e.g. ISBD(M) for monographs, ISBD(ER) for electronic resources.
These separate ISBDs follow the same general scheme as the main ISBD(G), but provide appropriate
interpretations for the specific materials under consideration.

AACR2 The Anglo-American Cataloguing Rules, Second Edition, 2002 Revision: 2005 Update are the official
guidelines for the construction of catalogues in general libraries in the English-speaking world. Other
national cataloguing codes exist as well. AACR2 is explicitly based on the general framework of the
ISBD(G) and the subsidiary ISBDs: it gives a description of how to catalogue items according to the ISBDs,
and how to construct indexes and cross-references.

ANSI Z.39.29 ANSI Z.39.29 is an American national standard governing bibliographic references for use
in bibliographies, end-of-work lists, references in abstracting and indexing publications, and outputs
from computerized bibliographic data bases. This standard has however now been withdrawn, pending
substantial revision. The international standard which covers the same area is ISO 690:1987. Other
relevant standards include BS 1629:1989, BS 5605:1978, and BS 6371:1983.

The TEl Header Module

The module described in this chapter makes available the following components:

Module header: The TEI Header

« Elements defined: appInfo application authority availability biblFull cRefPattern catDesc catRef cate-
gory change classCode classDecl correction creation distributor edition editionStmt editorialDecl encod-
ingDesc extent fileDesc funder geoDecl handNote hyphenation idno interpretation keywords langUsage

54

2.8. The TEI Header Module

language namespace normalization notesStmt principal profileDesc projectDesc publicationStmt quota-
tion refState refsDecl rendition revisionDesc samplingDecl segmentation seriesStmt sourceDesc sponsor
stdVals tagUsage tagsDecl taxonomy teiHeader textClass titleStmt typeNote

« Classes defined: model.applicationLike model.editorialDeclPart model.encodingPart model.headerPart
model.profileDescPart model.sourceDescPart

The selection and combination of modules to form a TEI schema is described in 1.2. Defining a TEI Schema.

55

2. The TEI Header

56

Chapter 3

Elements Available in All TEI Documents

This chapter describes elements which may appear in any kind of text and the tags used to mark them in all
TEI documents. Most of these elements are freely floating phrases, which can appear at any point within the
textual structure, although they must generally be contained by a higher-level element of some kind (such as
a paragraph). A few of the elements described in this chapter (for example, bibliographic citations and lists)
have a comparatively well-defined internal structure, but most of them have no consistent inner structure of
their own. In the general case, they contain only a few words, and are often identifiable in a conventionally
printed text by the use of typographic conventions such as shifts of font, use of quotation or other punctuation
marks, or other changes in layout.

This chapter begins by describing the <p> tag used to mark paragraphs, the prototypical formal unit for
running text in many TEI modules. This is followed, in section 3.2. Treatment of Punctuation, by a discussion
of some specific problems associated with the interpretation of conventional punctuation, and the methods
proposed by the Guidelines for resolving ambiguities therein.

The next section (section 3.3. Highlighting and Quotation) describes a number of phrase-level elements
commonly marked by typographic features (and thus well-represented in conventional markup languages).
These include features commonly marked by font shifts (section 3.3.2. Emphasis, Foreign Words, and Unusual
Language) and features commonly marked by quotation marks (section 3.3.3. Quotation) as well as such features
as terms, cited words, and glosses (section 3.3.4. Terms, Glosses, Equivalents, and Descriptions).

Section 3.4. Simple Editorial Changes introduces some phrase-level elements which may be used to record
simple editorial interventions, such as emendation or correction of the encoded text. The elements described
here constitute a simple subset of the full mechanisms for encoding such information (described in full in
chapter 11. Representation of Primary Sources), which should be adequate to most commonly encountered
situations.

The next section (section 3.5. Names, Numbers, Dates, Abbreviations, and Addresses) describes several phrase-
level and inter-level elements which, although often of interest for analysis or processing, are rarely explicitly
identified in conventional printing. These include names (section 3.5.1. Referring Strings), numbers and
measures (section 3.5.3. Numbers and Measures), dates and times (section|3.5.4. Dates and Times), abbreviations
(section 3.5.5. Abbreviations and Their Expansions), and addresses (section |3.5.2. Addresses).

In the same way, the following section (section 3.6. Simple Links and Cross-References) presents only a subset
of the facilities available for the encoding of cross-references or text-linkage. The full story may be found in
chapter 16. Linking, Segmentation, and Alignment; the tags presented here are intended to be usable for a wide
variety of simple applications.

Sections 3.7. Lists, and 3.8. Notes, Annotation, and Indexing, describe two kinds of quasi-structural elements:
lists and notes. These may appear either within chunk-level elements such as paragraphs, or between them.
Several kinds of lists are catered for, of an arbitrary complexity. The section on notes discusses both notes found

57

3. Elements Available in All TEI Documents

3.1

in the source and simple mechanisms for adding annotations of an interpretive nature during the encoding;
again, only a subset of the facilities described in full elsewhere (specifically, in chapter 17. Simple Analytic
Mechanisms) is discussed.

Section 3.9. Graphics and other non-textual components introduces some simple ways of representing graphic
or other non-textual content found in a text. A fuller discussion of the multimedia facilities supported by
these Guidelines may be found in chapters 14. Tables, Formulce, and Graphics and 16. Linking, Segmentation, and
Alignment.

Next, section 3.10. Reference Systems, describes methods of encoding within a text the conventional system
or systems used when making references to the text. Some reference systems have attained canonical authority
and must be recorded to make the text useable in normal work; in other cases, a convenient reference system
must be created by the creator or analyst of an electronic text.

Like lists and notes, the bibliographic citations discussed in section 3.11. Bibliographic Citations and Refer-
ences, may be regarded as structural elements in their own right. A range of possibilities is presented for the
encoding of bibliographic citations or references, which may be treated as simple phrases within a running
text, or as highly-structured components suitable for inclusion in a bibliographic database.

Additional elements for the encoding of passages of verse or drama (whether prose or verse) are discussed
in section 3.12. Passages of Verse or Drama.

The chapter concludes with a technical overview of the structure and organization of the module described
here. This should be read in conjunction with chapter 1. The TEI Infrastructure, describing the structure of the
TEI document type definition.

Paragraphs

The paragraph is the fundamental organizational unit for all prose texts, being the smallest regular unit into
which prose can be divided. Prose can appear in all TEI texts, even those that are primarily of another genre
(e.g., verse); thus the paragraph is described here, as an element which can appear in any kind of text.

Paragraphs can contain any of the other elements described within this chapter, as well as some other
elements which are specific to individual text types. We distinguish phrase-level elements, which must be
entirely contained within a paragraph and cannot appear except within one, from chunks, which can appear
between, but not within, paragraphs, and from inter-level elements, which can appear either within a single
paragraph or between paragraphs. The class of phrases includes emphasized or quoted phrases, names,
dates, etc. The class of inter-level elements includes bibliographic citations, notes, lists, etc. The class of
chunks includes the paragraph itself, and other elements which have similar structural properties, notably
the <ab> (anonymous block) element described in 16.3. Blocks, Segments, and Anchors) which may be used as
an alternative to the paragraph in some kinds of texts.

Because paragraphs may appear in different base or additional tag sets, their possible contents may differ
in different kinds of documents. In particular, additional elements not listed in this chapter may appear in
paragraphs in certain kinds of text. However, the elements described in this chapter are always by default
available in all kinds of text.

The paragraph is marked using the <p> element:

<p> (paragraph) marks paragraphs in prose.

If a consistent internal subdivision of paragraphs is desired, the <s> or <seg> (‘segment’) elements may be
used, as discussed in chapters 16. Linking, Segmentation, and Alignment and 17. Simple Analytic Mechanisms
respectively. More usually, however, paragraphs have no firm internal structure, but contain prose encoded as
a mix of characters, entity references, phrases marked as described in the rest of this chapter, and embedded
elements like lists, figures, or tables.

Since paragraphs are usually explicitly marked in Western texts, typically by indentation, the application of
the <p> tag usually presents few problems.

58

3.2. Treatment of Punctuation

In some cases, the body of a text may comprise but a single paragraph:

<body>
<p>I fully appreciate Gen. Pope's splendid achievements with their
invaluable results; but you must know that Major Generalships in the
Regular Army, are not as plenty as blackberries.</p>
</body>

Source: [137]
This news story shows typically short journalistic paragraphs:

<head>SARAJEVO, Bosnia and Herzegovina, April 19</head>

<p>Serbs seized more territory in this struggling new country today as
the United States Air Force ended a two-day airlift of humanitarian
aid into the capital, Sarajevo.</p>

<p>International relief workers called on European Community nations
to step up their humanitarian aid to the former Yugoslav republic,
in conjunction with new American aid flights if necessary.</p>

<p>A special envoy from the European Community, Colin Doyle, harshly
condemned the decision by Serbs to shell Sarajevo on Saturday night
during a visit to the Bosnian capital by a senior American official,
Deputy Assistant Secretary of State Ralph R. Johnson.</p>

<p>...</p>

The following extract from a Russian fairy tale demonstrates how other phrase level elements (in this case
<q> elements representing direct speech; see section 3.3.3. Quotation) may be nested within, but not across,
paragraphs:

<p>A fly built a castle, a tall and mighty castle.
There came to the castle the Crawling Louse. <qg>Who,
who's in the castle? Who, who's in your house?</q>
said the Crawling Louse. <q>I, I, the Languishing Fly.
And who art thou?</q>
<q>I'm the Crawling Louse.</q>
</p>
<p>Then came to the castle the Leaping Flea. <g>Who,
who's in the castle?</q> said the Leaping Flea. <g>I,
I, the Languishing Fly, and I, the Crawling Louse. And
who art thou?</q>
<q>I'm the Leaping Flea.</q>
</p>
<p>Then came to the castle the Mischievous Mosquito.
<q>Who, who's in the castle?</q> said the Mischievous
Mosquito. <q>I, I, the Languishing Fly, and I, the
Crawling Louse, and I, the Leaping Flea. And who art
thou?</q>
<q>I'm the Mischievous Mosquito.</q>
</p>

Source: [134]]

Treatment of Punctuation

Punctuation marks cause two distinct classes of problem for text markup: the marks may not be available in the
character set used, and they may be significantly ambiguous. To some extent, the availability of the Unicode

59

3. Elements Available in All TEI Documents

character set addresses the first of these problems, since it provides specific code points for most punctuation
marks, and also the second to the extent that it distinguishes glyphs (such as stop, comma, and hyphen) which
are used with different functions. Thus, for example, different Unicode code points are available for the hyphen
used as a minus sign (x2212), as a word breaking hyphen (x2010), and as a soft or ‘non-breaking’ hyphen
(x00AD); such distinctions are not however made in all possible cases, particularly where older writing systems
are concerned. Where punctuation itself is the subject of study, the element <pc> (punctuation character) may
be used to mark it explicitly, as further discussed in |17.1.2. Below the word level. The <g> element and other
facilities described in chapter 5. Representation of Non-standard Characters and Glyphs may also be used to define
markup for non-standard punctuation characters.

Punctuation is itself a form of markup, historically introduced to provide the reader with an indication about
how the text should be read. As such, it is unsurprising that encoders will often wish to encode directly the
purpose for which punctuation was provided, as well as, or even instead of, the punctuation itself. We discuss
some typical cases below.

The Full stop (period) may mark (orthographic) sentence boundaries, abbreviations, decimal points, or serve
as a visual aid in printing numbers. These usages can be distinguished by tagging S-units, abbreviations, and
numbers, as described in sections 16.3. Blocks, Segments, and Anchors, 3.5.5. Abbreviations and Their Expansions,
and 3.5.3. Numbers and Measures respectively. However, there are independent reasons for tagging these,
whether or not they are marked by full stops, and the polysemy of the full stop itself is perhaps no different
from that of any other character in the writing system.

The Question mark and exclamation mark usually mark the end of orthographic sentences, but may also be
used as a mid-sentence comment by the author (! to express surprise or some other strong feeling, ? to query a
word or expression or mark a sentence as dubious in linguistic discussion). Such usages may be distinguished
by marking S-units, in which case the mid-sentence uses of these punctuation marks may be left unmarked, or
tagged using the <pc> element discussed in 17.1. Linguistic Segment Categories.

Dashes are used for a variety of purposes: as a mark of omission, insertion, or interruption; to show where a
new speaker takes over (in dialogue); or to introduce a list item. In the latter two cases particularly, it is clearly
desirable to mark the function as well as its rendition using the elements <q> or <item>, on which see section
3.3.3. Quotation, and section 3.7. Lists, respectively.

Quotation marks may be removed from text contained by <q> or <quote> elements on editorial grounds, or
they may be marked in a variety of ways; see the discussion of quotation and related features in section 3.3.3.
Quotation.

Apostrophes must be distinguished from single quote marks. As with hyphens, this disambiguation is
best performed by selecting the appropriate Unicode character, though it may also be represented by using
appropriate XML markup for quotations as suggested above. However, apostrophes have a variety of uses. In
English they mark contractions, genitive forms, and (occasionally) plural forms. Full disambiguation of these
uses belongs to the level of linguistic analysis and interpretation.

Parentheses and other marks of suspension such as dashes or ellipses are often used to signal information
about the syntactic structure of a text fragment. Full disambiguation of their uses also belongs to the level of
linguistic analysis and interpretation, and will therefore need to use the mechanisms discussed in chapter 17.
Simple Analytic Mechanisms.

Where punctuation marks are disambiguated by tagging their assumed function in the text (for example,
quotation), it may be debated whether they should be excluded or left as part of the text. In the case of quotation
marks, it may be more convenient to distinguish opening from closing marks simply by using the appropriate
Unicode character than to use the <q> element, with or without a rend attribute.

Where segmentation of a text is performed automatically, the accuracy of the result may be considerably
enhanced by a first pass in which the function of different punctuation characters is explicitly marked. This
need not be done for all cases, but only where the structural function of the punctuation markup (for example
as a word or phrase delimiter) is ambiguous. Thus, dots indicating abbreviation might be distinguished from

60

3.3. Highlighting and Quotation

3.3

3.3.1

dots indicating sentence end, and exclamation or question marks internal to a sentence distinguished from
those which terminate one. Furthermore, when encoding historical materials, it may be considered essential
to retain the original punctuation, whether by using an appropriate character code, if this is available (or using
the <g> element where it is not) or by an explicit encoding using <pc>. The particular method adopted will
vary depending upon the feature concerned and upon the purpose of the project.

Highlighting and Quotation

This section deals with a variety of textual features, all of which have in common that they are frequently
realized in conventional printing practice by the use of such features as underlining, italic fonts, or quotation
marks, collectively referred to here as highlighting. After an initial discussion of this phenomenon and alternate
approaches to encoding it, this section describes ways of encoding the following textual features, all of which
are conventionally rendered using some kind of highlighting:

« empbhasis, foreign words and other linguistically distinct uses of highlighting
« representation of speech and thought, quotation, etc.

« technical terms, glosses, etc.

What Is Highlighting?

By highlighting we mean the use of any combination of typographic features (font, size, hue, etc.) in a printed or
written text in order to distinguish some passage of a text from its surroundings.! The purpose of highlighting
is generally to draw the reader's attention to some feature or characteristic of the passage highlighted; this
section describes the elements recommended by these Guidelines for the encoding of such textual features.

In conventionally printed modern texts, highlighting is often employed to identify words or phrases which
are regarded as being one or more of the following:

o distinct in some way — as foreign, dialectal, archaic, technical, etc.

 emphatic, and which would for example be stressed when spoken

« not part of the body of the text, for example cross-references, titles, headings, labels, etc.

o identified with a distinct narrative stream, for example an internal monologue or commentary.

o attributed by the narrator to some other agency, either within the text or outside it: for example, direct
speech or quotation.

« setapart from the text in some other way: for example, proverbial phrases, words mentioned but not used,
names of persons and places in older texts, editorial corrections or additions, etc.

The textual functions indicated by highlighting may not be rendered consistently in different parts of a text
or in different texts. (For example, a foreign word may appear in italics if the surrounding text is in roman,
but in roman if the surrounding text is in italics.) For this reason, these Guidelines distinguish between the
encoding of rendering itself and the encoding of the underlying feature expressed by it.

Highlighting as such may be encoded by using either of the global attributes rend or rendition attributes (see
1.3.1.1. Global Attributes). This allows the encoder both to specify the function of a highlighted phrase or word,
by selecting the appropriate element described here or elsewhere in the Guidelines, and to further describe the
way in which it is highlighted, by means of the rend attribute. If the encoder wishes to offer no interpretation
of the feature underlying the use of highlighting in the source text, then the <hi> element may be used, which
indicates only that the text so tagged was highlighted in some way.

! Although the way in which a spoken text is performed, (for example, the voice quality, loudness, etc.) might be regarded as analogous to
‘highlighting’ in this sense, these Guidelines recommend distinct elements for the encoding of such ‘highlighting’ in spoken texts. See further section
8.3.6. Shifts,

61

3. Elements Available in All TEI Documents

<hi> (highlighted) marks a word or phrase as graphically distinct from the surrounding text, for reasons
concerning which no claim is made.

The <hi> element is provided by the model.hiLike class.

The possible values carried by the rend attribute are not formally defined in this version of the Guidelines.
Since the rend attribute may be used to document any peculiarity of the way a given segment of text was
rendered in the original source text, it may need to express a very large range of typographic features, by no
means restricted to typeface, type size, etc.

Where it is both appropriate and feasible, these Guidelines recommend that the textual feature marked by
the highlighting should be encoded, rather than just the simple fact of the highlighting. This is for the following

reasons:
« the same kind of highlighting may be used for different purposes in different contexts
« the same textual function may be highlighted in different ways in different contexts

« for analytic purposes, it is in general more useful to know the intended function of a highlighted phrase
than simply that it is distinct.

In many, if not most, cases the underlying function of a highlighted phrase will be obvious and non-
controversial, since the distinctions indicated by a change of highlighting correspond with distinctions dis-
cussed elsewhere in these Guidelines. The elements available to record such distinctions are, for the most
part, members of the model.emphLike class. This and the model.hiLike class mentioned above constitute the
model.highlighted class, which is a phrase level class. Members of this class may appear anywhere within
paragraph level elements.

The distinction between the two classes is simple, and typified by the two elements <hi> and <emph>: the
former marks simply that a passage is typographically distinct in some way, while the latter asserts that a passage
is linguistically emphasized for some purpose. These two properties, though often combined, are not identical.
It should however be recognized, however, that cases do exist in which it is not economically feasible to mark the
underlying function (e.g. in the preparation of large text corpora), as well as cases in which it is not intellectually
appropriate (as in the transcription of some older materials, or in the preparation of material for the study of
typographic practice). In such cases, the <hi> element or some other element from the model.hiLike class should
be used.

Elements which are sometimes realized by typographic distinction but which are not discussed in this section
include <title> (discussed in section 3.11. Bibliographic Citations and References) and <name> (discussed in
section 3.5.1. Referring Strings).

3.3.2 Emphasis, Foreign Words, and Unusual Language
This subsection discusses the following elements:

<foreign> (foreign) identifies a word or phrase as belonging to some language other than that of the
surrounding text.

<emph> (emphasized) marks words or phrases which are stressed or emphasized for linguistic or
rhetorical effect.

<distinct> identifies any word or phrase which is regarded as linguistically distinct, for example as archaic,
technical, dialectal, non-preferred, etc., or as forming part of a sublanguage.

These elements are all members of the model.emphLike class.

3.3.2.1 Foreign Words or Expressions

Words or phrases which are not in the main language of the text should be tagged as such, at least where the fact
is indicated in the text. Where the word or phrase concerned is already distinguished from the rest of the text
by virtue of its function (for example, because it is a name, a technical term, a quotation, a mentioned word,

62

3.3. Highlighting and Quotation

etc.) then the global xml:lang attribute should be used to specify additionally that its language distinguishes
it from the surrounding text. Any element in the TEI scheme may take a xml:lang attribute, which specifies
both the writing system and the language used by its content (see sections|1.3.1.1.2. Language Indicators and
vi.1 Language identification for discussion of this attribute and its values respectively). Where there is no other
applicable element, the element <foreign> may be used to provide a peg onto which the xml:lang may be
attached.

<g>Aren't you confusing <foreign xml:lang="1la">post hoc</foreign> with <foreign xml:lang="1la">propter
hoc</foreign>?</q> said the Bee Master.

<g>Wax-moth only succeed when

weak bees let them in.</q>

Source: [|117]]

The <foreign> element should not be used to represent foreign words which are mentioned or glossed within
the text: for these use the appropriate element from section 3.3.4. Terms, Glosses, Equivalents, and Descriptions
below. Compare the following example sentences:

John eats a <foreign xml:lang="fr">croissant</foreign> every morning.

Source: [1]

<mentioned xml:lang="fr">Croissant</mentioned> is difficult to
pronounce with your mouth full.

Source: [1]

A <term xml:lang="fr">croissant</term> is a crescent-shaped
piece of light, buttery, pastry that is usually eaten for
breakfast, especially in France.

Source: [47]]

Elements which do not explicitly state the language of their content by means of an xml:lang attribute are
understood to inherit a value for it from their parent element. In the general case, therefore, it is recommended
practice to supply a default value for xml:lang on the root <TEI> or <text> element, as further discussed in
section 1.3.1.1.2. Language Indicators

3.3.2.2 Emphatic Words and Phrases

The <emph> element is provided to mark words or phrases which are linguistically emphatic or stressed. Text
which is only typographically ‘emphasized’ falls into the class of highlighted text, and may be tagged with the
<hi> element. In printed works, emphasis is generally indicated by devices such as the use of an italic font, a
large typeface, or extra wide letter spacing; in manuscripts and typescripts, it is usually indicated by the use of
underlining. As the following examples demonstrate, an encoder may choose whether or not to make explicit
the particular type of rendition associated with the emphasis by use of the rend attribute. If a source text
consistently renders a particular feature (e.g. emphasis or words in foreign languages) in a particular way, the
rendering associated with that feature may be described in the TEI header using the <rendition> element. The
rend attribute may then be used to describe examples which deviate from the norm. For example, assuming
that the TEI Header has defined a default rendering for the <emph> element, the following encoding would
use it:

63

3. Elements Available in All TEI Documents

<gq>Sex, sir, is <emph>purely</emph> a
question of appetitel</q> Tarr exclaimed.

Source: [|135]]

If on the other hand no such default has been defined for the element, the encoder may specify it informally
using the rend attribute:

<g>What it all comes to is this,</q> he said.

<q>
<emph rend="italic">What does Christopher
Robin do in the morning nowadays?</emph>

</q>

Source: [151]

or, if a <rendition> element has been provided in the header (but not necessarily associated with any other
element), the rendition attribute may be used to point to it:

<l>Here Thou, great <name rend="italics">Anna</name>!

whom three Realms obey,</1>

<l>Doth sometimes Counsel take —

and sometimes <emph rendition="#italic">Tea</emph>.</1>

<!-- in the header ... -->

<rendition xml:id="italic" scheme="css">text-style:italic</rendition>

Source: [|167]]

Further information on the use of the <rendition> element is provided at 2.3.4. The Tagging Declaration.

The <hi> element is used to mark words or phrases which are highlighted in some way, but for which
identification of the intended distinction is difficult, controversial, or impossible. It enables an encoder simply
to record the fact of highlighting, possibly describing it by the use of a rend or rendition attribute, as discussed
above, without however taking a position as to the function of the highlighting. This may also be useful if the
text is to be processed in two stages: representing simply typographic distinctions during a first pass, and then
replacing the <hi> elements with more specific elements in a second pass.

Some simple examples:

<hi rend="gothic">And this Indenture further witnesseth</hi>
that the said <hi rend="italic">Walter Shandy</hi>, merchant,
in consideration of the said intended marriage ...

Source: [{198]

In this example, the first highlighted phrase uses black letter or gothic print to mimic the appearance of a
legal document, and italic to mark Walter Shandy as a name. In a second pass, the elements <head> or <label>
might be appropriate for the first use, and the element <name> for the second.

The heaviest rain, and snow, and hail, and sleet, could
boast of the advantage over him in only one respect. They
often <hi rend="quoted">came down</hi> handsomely, and
Scrooge never did.

64

3.3. Highlighting and Quotation

Source: [61]]

In this example, the phrase came down uses inverted commas to indicate a play on words.? In a second pass,
the element <soCalled> might be preferred.

3.3.2.3 Other Linguistically Distinct Material

For some kinds of analysis, it may be desirable to encode the linguistic distinctiveness of words and phrases
with more delicacy than is allowed by the <foreign> element. The <distinct> element is provided for this
purpose. Its attributes allow for additional information characterizing the nature of the linguistic distinction
to be made in two distinct ways: the type attribute simply assigns a user-defined code of some kind to the word
or phrase which assigns it to some register, sub-language, etc. No recommendations as to the set of values for
this attribute are provided at this time, as little consensus exists in the field.

Alternatively, the remaining three attributes may be used in combination to place a word or phrase on a
three-dimensional scale sometimes used in descriptive linguistics, as for example in Mattheier et al, 1988. The
time attribute places a word diachronically, for example as archaic, old-fashioned, contemporary, futuristic, etc.;
the space attribute places a word diatopically, that is, with respect to a geographical classification, for example
as national, regional, international, etc.; the social attribute places a word diastatically, that is, with respect to
a social classification, for example as technical, polite, impolite, restricted, etc. Again, no recommendations
are made for the values of these attributes at this time; the encoder should provide a description of the scheme
used in the appropriate section of the header (see section 2.3. The Encoding Description).

Examples:

Next morning a boy in that dormitory confided to his

bosom friend, a <distinct type="psSlang">fag</distinct> of
Macrea's, that there was trouble in their midst which

King <distinct type="archaic">would fain</distinct> keep
secret.

Source: [118]

Next morning a boy in that dormitory confided to his

bosom friend, a

<distinct time="1900" space="GB" social="publicschool">fag</distinct>
of Macrea's, that there was trouble in their midst which

King <distinct time="archaic">would fain</distinct> keep

secret.

Source: [118]

Where more complex (or more rigorous) interpretive analyses of the associations of a word are required, the
more detailed and general mechanisms described in chapter 18. Feature Structures should be preferred to these
simple characterizations. It may also be preferable to record the kinds of analysis suggested here by means of
the simple annotation element <note> described in section 3.8. Notes, Annotation, and Indexing, or the
element described in section 17.3. Spans and Interpretations.

3.3.3 Quotation

One form of presentational variation found particularly frequently in written and printed texts is the use of
quotation marks. As with the typographic variations discussed in the preceding section, it is generally helpful

2The Oxford English Dictionary documents the phrase to come down in the sense ‘to bring or put down; esp. to lay down money; to make a
disbursement’ as being in use, mostly in colloquial or humorous contexts, from at least 1700 to the latter half of the 19th century.

65

3. Elements Available in All TEI Documents

to separate the encoding of the underlying textual feature (for example, a quotation or a piece of direct speech)
from the encoding of its rendering (for example, the use of a particular style of quotation marks).
This section discusses the following elements, all of which are often rendered by the use of quotation marks:

<q> (separated from the surrounding text with quotation marks) contains material which is marked as
(ostensibly) being somehow different than the surrounding text, for any one of a variety of reasons
including, but not limited to: direct speech or thought, technical terms or jargon, authorial distance,
quotations from elsewhere, and passages that are mentioned but not used.

<said> (speech or thought) indicates passages thought or spoken aloud, whether explicitly indicated in the
source or not, whether directly or indirectly reported, whether by real people or fictional characters.

@direct may be used to indicate whether the quoted matter is regarded as direct or indirect
speech.

@aloud may be used to indicate whether the quoted matter is regarded as having been vocalized
or signed.

<quote> (quotation) contains a phrase or passage attributed by the narrator or author to some agency
external to the text.

<cit> (cited quotation) contains a quotation from some other document, together with a bibliographic
reference to its source. In a dictionary it may contain an example text with at least one occurrence of
the word form, used in the sense being described, or a translation of the headword, or an example.

<mentioned> marks words or phrases mentioned, not used.

<soCalled> contains a word or phrase for which the author or narrator indicates a disclaiming of
responsibility, for example by the use of scare quotes or italics.

The elements <mentioned> and <soCalled> are members of the class model.emphLike; the <q> and <said> are
members of the class model.qLike in their own right, while <cit> and <quote> are members of model.quoteLike,
a subclass of model.qLike. This class is a subclass of model.inter; hence all of these elements are permitted both
within and between paragraph-level elements.

The most common and important use of quotation marks is, of course, to mark quotation, by which we mean
simply any part of the text attributed by the author or narrator to some agency other than the narrative voice.
The <q> element may be used if no further distinction beyond this is judged necessary. If however it is felt
necessary to distinguish passages which are in some sense external to the work from passages of direct speech
or thought, a more precise element may be chosen from the list above. Typical examples include passages cited
from other works, for which the element <quote> may be used, and words or phrases spoken or thought by
people or characters within the current work, for which the element <said> may be used. The <soCalled>
element is used for cases where the author or narrator distances him or herself from the words in question
without however attributing them to any other voice in particular. The <mentioned> element is appropriate
for a case where a word or phrase is being discussed in the body of a text rather than forming part of the text
directly.

As noted above, if the distinction among these various reasons why a passage is offset from surrounding
text cannot be made reliably, or is not of interest, then all quoted matter may simply be marked using the <q>
element.

Quotation may be indicated in a printed source by changes in type face, by special punctuation marks (single
or double or angled quotes, dashes, etc.) and by layout (indented paragraphs, etc.). If these characteristics are
of interest, one or other of the global rend or rendition attributes discussed in section 1.3.1.1. Global Attributes
may be used to record them.

Quotation marks themselves may, like other punctuation marks, be felt for some purposes to be worth
retaining within a text, quite independently of their description by the rend attribute. This should generally

66

3.3. Highlighting and Quotation

be done using the appropriate Unicode character, or, if this is not possible, a numeric character reference (see

v.6.1 Character References).

Alternatively, the encoder may suppress all quotation marks, possibly recording their form using some

appropriate set of conventions in the rend attribute. Some examples are shown below:

<said rend="PRE lsquo POST rsquo">Who-e debel
you?</said> — he at last said —

<said rend="PRE lsquo POST rsquo">you no speak-e,
damme, I kill-e.</said> And so saying,

the lighted tomahawk began flourishing

about me in the dark.

Source:

Adolphe se tourna vers lui :

<said>— Alors, Albert, quoi de neuf?</said>
<said>— Pas grand-chose.</said>

<said>— Il fait beau,</said> dit Robert.

Source:

Adolphe se tourna vers lui :

<said rend="PRE mdash">Alors,

Albert, quoi de neuf ?</said>

<said rend="PRE mdash">Pas grand-chose.</said>
<said rend="PRE mdash">I1 fait beau,</said>
dit Robert.

Source:

As members of the att.ascribed class, elements <said> and <q> share the following attribute:

att.ascribed provides attributes for elements representing speech or action that can be ascribed to a
specific individual.
@who indicates the person, or group of people, to whom the element content is ascribed.

This may be used to make explicit who is speaking:

Adolphe se tourna vers lui :

<said who="#Adolphe">— Alors, Albert,

quoi de neuf?</said>

<said who="#Albert">— Pas grand-chose.</said>
<said who="#Robert">— Il fait beau,</said>
dit Robert.

<l-- ... -->

<list type="speakers">
<item xml:id="Adolphe"/>
<item xml:id="Albert"/>
<item xml:id="Robert"/>

</list>

Source:

67

[1149]

[171]

[1171]

[171]

3. Elements Available in All TEI Documents

The who attribute may be supplied whether or not an indication of the speaker is given explicitly in the text. It
may take the form (as above) of a normalized form of the speaker's name, but its role is to act as a pointer to a
location elsewhere in the text where data about each speaker may be supplied. The most appropriate place to
place such information is within the participant description component of the TEI Header, as further discussed
in 15.2.2. The Participant Description but for simple cases like the above, a simple list of speakers located in the
front or back matter of the text may suffice.

It may also be useful to distinguish representations of speech from representations of thought, in modern
printed texts often indicated by a change of typeface. The aloud attribute is provided for this purpose, as in
this example:

<said aloud="true">0h yes,</said> said Henry,

<said aloud="false">I mean

Gordon Macrae, for example..</said>

<said aloud="false">Jungian

Analyst with Winebox! That's what you called him, you callous bastard,
didn't you? Eh? Eh?</said>

Source: [|219]]

Quoted matter may be embedded within quoted matter, as when one speaker reports the speech of another:

<said who="#Wilson">Spaulding, he came down into the office just this day
eight weeks with this very paper in his hand, and he says:—
<said who="#WilsonSpaulding">I wish to the Lord, Mr. Wilson, that I was a
red-headed man.</said>
</said>
<l-- ... -->
<list type="speakers">
<item xml:id="Wilson">Wilson</item>
<item xml:id="WilsonSpaulding">Spaulding reported by Wilson</item>
<l-- ...-->

</list>

Source: [65]]

Direct speech nested in this way is treated in the same way as elsewhere: a change of rendition may occur,
but the same element should be used. An encoder may however choose to distinguish between direct speech
which contains quotations from extra-textual matter and direct speech itself, as in the following example:

<p>
<said>The Lord! The Lord! It is Sakya Muni himself,</said> the lama half
sobbed; and under his breath began the wonderful Buddhist
invocation: -<said>
<quote>
<1>To Him the Way — the Law — Apart —</1>
<1>Whom Maya held beneath her heart</1>
<l>Ananda's Lord — the Bodhisat</1>
</quote>
And He is here! The Most Excellent Law is here also. My
pilgrimage is well begun. And what work! What work!</said>
</p>

Source: [119]

68

3.3. Highlighting and Quotation

Quotations from other works are often accompanied by a reference to their source. The <cit> element may
be used to group together the quotation and its associated bibliographic reference, which should be encoded
using the elements for bibliographic references discussed in section 3.11. Bibliographic Citations and References,
as in the following example.

<div xml:id="mm@1l" type="chapter">
<head>Chapter 1</head>
<epigraph>
<cit>
<quote>
<1>Since I can do no good because a woman</1>
<l>Reach constantly at something that is near it.</1>
</quote>
<bibl>
<title>The Maid's Tragedy</title>
<author>Beaumont and Fletcher</author>
</bibl>
</cit>
</epigraph>
<p>Miss Brooke had that kind of beauty which seems to be thrown into
relief by poor dress...</p>
</div>

Source: [72]

Like other bibliographic references, the citation attached to a quotation may be represented simply by a pointer,
as in this example:

Lexicography has shown little sign of being affected by the
work of followers of J.R. Firth, probably best summarized
in his slogan, <cit>
<quote>You shall know a word by the company it keeps.</quote>
<ref>(Firth, 1957)</ref>
</cit>

Source: [|102]]

Unlike most of the other elements discussed in this chapter, direct speech and quotations may frequently
contain other high-level elements such as paragraphs or verse lines, as well as being themselves contained
by such elements. Three possible solutions exist for this well-known structural problem:

« the quotation is broken into segments, each of which is entirely contained within a paragraph
« the quotation is marked up using stand-oftf markup

« the quotation boundaries are represented by empty segment boundary delimiter elements

For further discussion and several examples, see chapter 20. Non-hierarchical Structures.

Finally, in this section, the element <soCalled> is provided for all cases in which quotation marks are used
to distance the quoted text from the narrator or speaker. Common examples include the ‘scare’ quotes often
found in newspaper headlines and advertising copy, where the effect is to cast doubts on the veracity of an
assertion:

<head>PM dodges <soCalled>election threat</soCalled> in interview</head>

Source: [203]

The same element should be used to mark a variety of special ironic usages. Some further examples follow:

69

3. Elements Available in All TEI Documents

He hated <soCalled>good</soCalled> books.

Source: [|1]]

<soCalled>Croissants</soCalled> indeed! toast not good enough for you?

Source: [|1]]

Although Chomsky's decision that all NL

sentences are finite objects was never justified by arguments from
the attested properties of NLs, it did have a certain
<soCalled>social</soCalled> justification. It was commonly assumed in
works on logic until fairly recently that the notion
<mentioned>language</mentioned> is necessarily restricted to finite
strings.

Source: [|125]]

3.34 Terms, Glosses, Equivalents, and Descriptions

This section describes a set of textual elements which are used to provide a gloss, alternate identification, or
description of something.

Technical terms are often italicized or emboldened upon first mention in printed texts; an explanation or
gloss is sometimes given in quotation marks. Linguistic analyses conventionally cite words in languages
under discussion in italics, providing a gloss immediately following marked with single quotation marks.
Other texts in which individual words or phrases are mentioned (for example, as examples) rather than used
may mark them either with italics or with quotation marks, and will gloss them less regularly.

<term> contains a single-word, multi-word, or symbolic designation which is regarded as a technical term.
<gloss> identifies a phrase or word used to provide a gloss or definition for some other word or phrase.

These elements are also members of the class model.emphLike.

A <term> may appear with or without a gloss, as may a <mentioned> element. Where the <gloss> is present,
it may be linked to the term it is glossing by means of its target attribute. To establish such a link, the encoder
should give an xml:id value to the <term> or <mentioned> element and provide that id as the value of the
target attribute on the <gloss> element. The following examples demonstrate this facility:

Examples:

We may define <term xml:id="TDPv" rend="sc">discoursal point of view</term>
as

<gloss target="#TDPv">the relationship, expressed through discourse
structure, between the implied author or some other addresser,

and the fiction.</gloss>

Source: [{130]

<gloss rend="unmarked" target="#PRSR">A computational device that infers
structure from grammatical strings of words</gloss> is known as a

<term xml:id="PRSR">parser</term>, and much of the history of NLP over the
last 20 years has been occupied with the design of parsers.

70

3.3. Highlighting and Quotation

Source: [|86]]

Note that the element <term> is intended for use with words or phrases identified as terminological in nature;
where words or phrases are simply being cited, discussed, or glossed in a text, it will often be more appropriate
to use the <mentioned> element, as in the following example:

There is thus a striking accentual difference between a verbal

form like <mentioned xml:id="cw234" xml:lang="grc">eluthemen</mentioned>
<gloss target="#cw234">we were released,</gloss> accented on the

second syllable of the word, and its participial derivative

<mentioned xml:id="cw235" xml:lang="grc">lutheis</mentioned>
<gloss target="#cw235">released,</gloss> accented on the last.

Source: [|178]]

For technical terminology in particular, and generally in terminological studies, it may be useful to associate
an instance of a term within a text with a canonical definition for it, which is stored either elsewhere in the same
text (for example in a glossary of terms) or externally, for example in a database, authority file, or published
standard. The attributes key and ref discussed in section 3.5.1. Referring Strings below are available on the
<term> element for this purpose.

Another group of elements is used to supply different kinds of names for objects described by the TEI. Ex-
amples of this are documentation of elements, attributes, classes (and also attribute values where appropriate),
and description of glyphs.

<altldent> (alternate identifier) supplies the recommended XML name for an element, class, attribute, etc.
in some language.
<desc> (description) contains a brief description of the object documented by its parent element,
including its intended usage, purpose, or application where this is appropriate.
<equiv/> (equivalent) specifies a component which is considered equivalent to the parent element, either
by co-reference, or by external link.
@uri (uniform resource identifier) references the underlying concept of which the parent is a
representation by means of some external identifier
@filter references an external script which contains a method to transform instances of this
element to canonical TEI

@name names the underlying concept of which the parent is a representation

Along with the <gloss> element mentioned above, these elements constitute the model.glossLike class.

The <gloss> element may be used to provide a brief explanation for the name of the object if this is not self-
explanatory. For example, the specification for the element <ab> used to mark arbitrary blocks of text begins
as follows:

<elementSpec module="linking" ident="ab">
<gloss>anonymous block</gloss>

<l--... -->

</elementSpec>

A <gloss> may also be supplied for an attribute name or an attribute value in similar circumstances:

<vallList type="open">
<valltem ident="susp">

71

3. Elements Available in All TEI Documents

<gloss>suspension</gloss>
<desc>the abbreviation provides the first letter(s)
of the word or phrase, omitting the remainder.</desc>

</valltem>
<valltem ident="contr">

<gloss>contraction</gloss>

<desc>the abbreviation omits some letter(s) in the middle.</desc>
</valltem>

<l--,..-->

</vallList>

Note that this is quite distinct from the use of the <desc> element, which contains a full description of the
intended semantics for the object.

The <equiv> element is used to document equivalencies between the concept represented by this object and
the same concept as described in other schemes or ontologies. The uri attribute is used to supply a pointer to
some location where such external concepts are defined. For example, to indicate that the TEI <death> element
corresponds to the concept defined by the CIDOC CRM category E69, the declaration for the former might
begin as follows:

<elementSpec module="namesdates" ident="death">
<equiv name="E69" uri="http://cidoc.ics.forth.gr/"/>
<l--... -->

</elementSpec>

The <equiv> element may also be used to map newly-defined elements onto existing constructs in the TEI,
using the filter and name attributes to point to an implementation of the mapping. This is useful when a
TEI customization (see 23.2. Personalization and Customization) defines ‘shortcuts’ for convenience of data
entry or markup readability. For example, suppose that in some TEI customization an element <bo> has been
defined which is conceptually equivalent to the standard markup construct <hi rend='bold'>. The following
declarations would additionally indicate that instances of the <bo> element can be converted to canonical TEI
by obtaining a filter from the URI specified, and running the procedure with the name bold. The mimeType
attribute specifies the language (in this case XSL) in which the filter is written:

<elementSpec ident="bo" ns="http://www.example.org/ns/notTEI">
<equiv
filter="http://www.example.com/equiv-filter.xsl"
mimeType="text/xsl"
name="bold"/>
<gloss>bold</gloss>
<desc>contains a sequence of characters rendered in a bold face.</desc>
<l-- ... -->

</elementSpec>

The <altIdent> element is used to provide an alternative name for an object, for example using a different
natural language. Thus, the following might be used to indicate that the <abbr> element should be identified
using the German word Abkiirzung:

<elementSpec ident="abbr" mode="change">
<altIdent xml:lang="de">Abkiirzung</altIdent>

<l--...-->

</elementSpec>

72

3.3. Highlighting and Quotation

In the same way, the following specification for the <graphic> element indicates that the attribute url may also
be referred to using the alternate identifier href:

<elementSpec ident="graphic" mode="change">
<attList>
<attDef mode="change" ident="url">
<altIldent>href</altIdent>
</attDef>
<l-- ,... -->
</attList>
</elementSpec>

By default, the <altIdent> of a component is identical to the value of its ident attribute.
The contents of the <desc> element provide a brief characterization of the intended function of the object
being documented in a form that permits its quotation out of context, as in the following example:

<elementSpec module="core" ident="foreign">
<l--... -->
<desc>identifies a word or phrase as belonging to some language other
than that of the surrounding text. </desc>

<l--... -->

</elementSpec>

By convention, a <desc> element begins with a verb such as contains, indicates, specifies, etc. and contains a
single clause.

3.3.5 Some Further Examples

As a simple example of the elements discussed here, consider the following sentence:

On the one hand the Nibelungenlied is associated with the new rise of romance of twelfth-century
France, the romans d'antiquité, the romances of Chrétien de Troyes, and the German adaptations of
these works by Heinrich van Veldeke, Hartmann von Aue, and Wolfram von Eschenbach.

A first approximation to the encoding of this sentence might be simply to record the fact that the phrases
printed above in italics are highlighted, as follows:

On the one hand the <hi rend="italic">Nibelungenlied</hi> is
associated with the new rise of romance of twelfth-century France,
the <hi xml:lang="fr" rend="italic">romans d'antiquité</hi>,

the romances of Chrétien de Troyes,

Source: [6]

This encoding would, however, lose the important distinction between an italicized title and an italicized
foreign phrase. Many other phrases might also be italicized in the text, and a retrieval program seeking to
identify foreign terms (for example) would not be able to produce reliable results by simply looking for italicized
words. Where economic and intellectual constraints permit, therefore, it would be preferable to encode both
the function of the highlighted phrases and their appearance, as follows:

On the one hand the <title rend="italic">Nibelungenlied</title>

is associated with the new rise of romance of twelfth-century France,
the <foreign rend="italic">romans d'antiquité</foreign>, the
romances of Chrétien de Troyes,

73

3. Elements Available in All TEI Documents

34

Source: [6]]

In this example, the decision as to which textual features are distinguished by the highlighting is relatively
uncontroversial. As a less straightforward example, consider the use of italic font in the following passage:

A pretty common case, I believe; in all vehement debatings. She says I am too witty; Anglicé, too pert;
I, that she is foo wise; that is to say, being likewise put into English, not so young as she has been: in
short, she is grown so much into a mother, that she had forgotten she ever was a daughter. ...

Clearly, the word vehement is not italicized for the same reason as the phrase not so young as she has been;
the former is emphasized, while the latter is proverbial. It also provides an ironic gloss for the words foo wise,
in the same way as too pert glosses too witty. The glossed phrases are not, however, technical terms or cited
words, but quoted phrases, as if the writer were putting words into her own and her mother's mouths. Finally,
the words mother and daughter are apparently italicized simply to oppose them in the sentence; certainly they
do not fit into any of the categories so far proposed as reasons for italicizing. Note also that the word Anglicé is
not italicized although it is not generally considered an English word.

The following sample encoding for the above passage attempts to take into account all the above points:

A pretty common case, I believe; in all <emph>vehement</emph>
debatings. She says I am <q rend="italic">too witty</q>;
<foreign xml:lang="1la" rend="roman">Anglicé</foreign>,

<gloss rend="italic">too pert</gloss>; I, that she is

<q rend="italic"> too wise</g>; that is to say, being likewise
put into English, <gloss rend="italic">not so young as she has
been</gloss>: in short, she is grown so much into a

<hi rend="italic">mother</hi>, that she had forgotten she ever
was a <hi rend="italic">daughter</hi>.

Source: [174]

Simple Editorial Changes

As in editing a printed text, so in encoding a text in electronic form, it may be necessary to accommodate
editorial comment on the text and to render account of any changes made to the text in preparing it. The tags
described in this section may be used to record such editorial interventions, whether made by the encoder, by
the editor of a printed edition used as a copy text, by earlier editors, or by the copyists of manuscripts.

The tags described here handle most common types of editorial intervention and stereotyped comment;
where less structured commentary of other types is to be included, it should be marked using the <note>
element described in section 3.8. Notes, Annotation, and Indexing. Systematic interpretive annotation is also
possible using the various methods described in chapter 16. Linking, Segmentation, and Alignment. The examples
given here illustrate only simple cases of editorial intervention; in particular, they permit economical encoding
of a simple set of alternative readings of a short span of text. To encode multiple views of large or heterogenous
spans of text, the mechanisms described in chapter 16. Linking, Segmentation, and Alignment should be used. To
encode multiple witnesses of a particular text, a similar mechanism designed specifically for critical editions is
described in chapter 12. Critical Apparatus.

For most of the elements discussed here, some encoders may wish to indicate both a responsibility, that is, a
code indicating the person or agency responsible for making the editorial intervention in question, and also an
indication of the degree of certainty which the encoder wishes to associate with the intervention. Because these
requirements are common to many of the elements discussed in this section, they are provided by an attribute
class, called att.editLike. All members of this class carry the following optional attributes:

att.editLike provides attributes describing the nature of a encoded scholarly intervention or interpretation

of any kind.

74

3.4. Simple Editorial Changes

@cert (certainty) signifies the degree of certainty associated with the intervention or
interpretation.

@resp (responsible party) indicates the agency responsible for the intervention or
interpretation, for example an editor or transcriber.

@evidence indicates the nature of the evidence supporting the reliability or accuracy of the
intervention or interpretation.

Many of the elements discussed here can be used in two ways. Their primary purpose is to indicate that the
text encoded as the element's content represents an editorial intervention (or non-intervention) of a specific
kind, indicated by the element itself. However, pairs or other meaningful groupings of such elements can also
be supplied, wrapped within a special purpose <choice> element:

<choice> groups a number of alternative encodings for the same point in a text.

This element enables the encoder to represent for example a text in its ‘original’ uncorrected and unaltered
form, alongside the same text in one or more ‘edited’ forms. This usage permits software to switch automatically
between one ‘view’ of a text and another, so that (for example) a stylesheet may be set to display either the text
in its original form or after the application of editorial interventions of particular kinds.

Elements which can be combined in this way constitute the model.choicePart class. The default members
of this class are <sic>, <corr>, <reg>, <orig>, <unclear>, <add>, and ; their functions and usage are
described further below.

Three categories of editorial intervention are discussed in this section:

o indication or correction of apparent errors
o indication or regularization of variant, irregular, non-standard, or eccentric forms

o editorial additions, suppressions, and omissions

A more extended treatment of the use of these tags in transcriptional and editorial work is given in chapter
11. Representation of Primary Sources.

3.4.1 Apparent Errors
When the copy text is manifestly faulty, an encoder or transcriber may elect simply to correct it without
comment, although for scholarly purposes it will often be more generally useful to record both the correction
and the original state of the text. The elements described here enable all three approaches, and allows the last
to be done is such a way as make it easy for software to present either the original or the correction.
<sic> (latin for thus or so) contains text reproduced although apparently incorrect or inaccurate.
<corr> (correction) contains the correct form of a passage apparently erroneous in the copy text.

The following examples show alternative treatment of the same material. The copy text reads:

Another property of computer-assisted historical research is that data modelling must permit any
one textual feature or part of a textual feature to be a part of more than one information model and
to allow the researcher to draw on several such models simultaneously, for example, to select from
a machine-readable text those marginal comments which indicate that the date's mentioned in the
main body of the text are incorrect.

An encoder may choose to correct the typographic error, either silently or with an indication that a correction
has been made, as follows:

.. marginal comments which indicate that the <corr>dates</corr>
mentioned in the main body of the text are incorrect.

75

3. Elements Available in All TEI Documents

Source: [|1]]

Alternatively, the encoder may simply record the typographic error without correcting it, either without
comment or with a <sic> element to indicate the error is not a transcription error in the encoding:

. marginal comments which indicate that the <sic>date's</sic>
mentioned in the main body of the text are incorrect.

Source: [|1]]

If the encoder elects both to record the original source text and to provide a correction for the sake of word-
search and other programs, both <sic> and <corr> are used, wrapped in a <choice>:

. marginal comments which indicate that the
<choice>

<corr>dates</corr>

<sic>date's</sic>
</choice> mentioned in the main body of the text are
incorrect.

Source: [|1]]

The <sic> and <corr> elements can appear in either order.
Ifit is desired to indicate the person or edition responsible for the emendation, this might be done as follows:

. marginal comments which indicate that the
<choice>

<corr resp="#msm">dates</corr>

<sic>date's</sic>
</choice> mentioned in the main body of the text are
incorrect.

<!-- within the header for this document ... -->
<respStmt>

<resp>editor</resp>

<name xml:id="msm">C.M. Sperberg McQueen</name>
</respStmt>

Source: [|1]]

Here the resp attribute has been used to indicate responsibility for the correction. Its value (#msm) is an
example of the pointer values discussed in section 3.6. Simple Links and Cross-References; in this case, it points to
a <name> element within the TEI Header, but any element might be indicated in this way, including for example
a <person> element (if the module described in 13. Names, Dates, People, and Places has been included), or one
of the bibliographic elements described in 3.11. Bibliographic Citations and References, if the correction has been
taken from some other source. The resp attribute is available for all elements which are part of the att.editLike
class. The same class makes available a cert attribute,which may be used to indicate the degree of editorial
confidence in a particular correction, as in the following example:

An <choice>
<corr cert="high">Autumn</corr>
<sic>Antony</sic>

</choice> it was,

That grew the more by reaping

76

3.4. Simple Editorial Changes

Source: [184]]

See further the discussion in section 11.3.3. Correction and Conjecture.

Where, as here, the correction takes the form of adding text not otherwise present in the text being encoded,
the encoder should use the <corr> element. Where the correction is present in the text being encoded, and
consists of some combination of visible additions and deletions, the elements <add> or should be used:
see further section 3.4.3. Additions, Deletions, and Omissions below. Where the correction takes the form of
addition of material not present in the original because of physical damage or illegibility, the <supplied>
element may be used. Where the ‘correction’ is simply a matter of expanding an abbreviation the <ex> element
may be used. These and other elements to support the detailed encoding of authorial or scribal interventions
of this kind are all provided by the module described in chapter 11. Representation of Primary Sources.

3.4.2 Regularization and Normalization

When the source text makes extensive use of variant forms or non-standard spellings, it may be desirable for
a number of reasons to regularize it: that is, to provide ‘standard’ or ‘regularized” forms equivalent to the non-
standard forms.?

As with other such changes to the copy text, the changes may be made silently (in which case the TEI header
should specify the types of silent changes made) or may be explicitly marked using the following elements:

<reg> (regularization) contains a reading which has been regularized or normalized in some sense.

<orig> (original form) contains a reading which is marked as following the original, rather than being
normalized or corrected.

<choice> groups a number of alternative encodings for the same point in a text.

Typical applications for these elements include the production of editions intended for student or lay readers,
linguistic research in which spelling or usage variation is not the main question at issue, production of spelling
dictionaries, etc.

Consider this 16th-century text:

how godly a dede it is to overthrowe so wicked a race the world may judge: for my part I thinke there
canot be a greater sacryfice to God.

An encoder may choose to preserve the original spelling of this text, but simply flag it as nonstandard by
using the <orig> element with no attributes specified, as follows:

<p>...how godly a <orig>dede</orig> it is to
<orig>overthrowe</orig> so wicked a race the

world may judge: for my part I <orig>thinke</orig>
there <orig>canot</orig> be a greater
<orig>sacryfice</orig> to God</p>

Source: [132]]

Alternatively, the encoder may simply indicate that certain words have been modernized by using the <reg>
element with no attributes specified, as follows:

<p>...how godly a

<reg>deed</reg> it is to <reg>overthrow</reg> so wicked a race the
world may judge: for my part I <reg>think</reg>

there <reg>cannot</reg> be a greater

<reg>sacrifice</reg> to God.</p>

3In some contexts, the term regularization has a narrower and more specific significance than that proposed here: the <reg> element may be used
for any kind of regularization, including normalization, standardization, and modernization.

77

3. Elements Available in All TEI Documents

Source: [132]]

Alternatively, the encoder may elect to record both old and new spellings, so that (for example) the same
electronic text may serve as the basis of an old- or new-spelling edition:

<p>...how godly a <choice>
<orig>dede</orig>
<reg>deed</reg>
</choice> it is to
<choice>
<orig>overthrowe</orig>
<reg>overthrow</reg>
</choice> so wicked a race the
world may judge: for my part I <choice>
<orig>thinke</orig>
<reg>think</reg>
</choice>
there <choice>
<orig>canot</orig>
<reg>cannot</reg>
</choice> be a greater
<choice>
<orig>sacryfice</orig>
<reg>sacrifice</reg>
</choice> to God.</p>

Source: [32]
As elsewhere, the resp attribute may be used to specify the agency responsible for the regularization.

3.43 Additions, Deletions, and Omissions
The following elements are used to indicate when words or phrases have been omitted from, added to, or
marked for deletion from, a text. Like the other editorial elements, they allow for a wide range of editorial
practices:

<gap> (gap) indicates a point where material has been omitted in a transcription, whether for editorial
reasons described in the TEI header, as part of sampling practice, or because the material is illegible,
invisible, or inaudible.
@reason gives the reason for omission. Sample values include sampling, inaudible, irrelevant,
cancelled.

<unclear> contains a word, phrase, or passage which cannot be transcribed with certainty because it is
illegible or inaudible in the source.
@reason indicates why the material is hard to transcribe.

<add> (addition) contains letters, words, or phrases inserted in the text by an author, scribe, annotator, or
corrector.

 (deletion) contains a letter, word, or passage deleted, marked as deleted, or otherwise indicated as
superfluous or spurious in the copy text by an author, scribe, annotator, or corrector.

Encoders may choose to omit parts of the copy text for reasons ranging from illegibility of the source or
impossibility of transcribing it, to editorial policy, e.g. a systematic exclusion of poetry or prose from an
encoding. The full details of the policy decisions concerned should be documented in the TEI Header (see
section 2.3. The Encoding Description). Each place in the text at which omission has taken place should be
marked with a <gap> element, with optionally further information about the reason for the omission, its extent,
and the person or agency responsible for it, as in the following examples:

78

3.4. Simple Editorial Changes

<gap reason="illegible" unit="word" quantity="2"/>

<gap reason="overwriting illegible" extent="several characters"/>

Note that the extent of the gap may be marked precisely using attributes unit and quantity, or more descrip-
tively using the extent attribute. Other, more detailed, options are also available for representing dimensions
of any kind; see further 10.3.4. Dimensions.

The <desc> element may be used to supply a description of the material omitted, where that is considered
useful:

<gap reason="sampling" extent="120" unit="lines">
<desc>irrelevant commentary</desc>
</gap>

.. Their arrangement with respect to Jupiter and to each other was as follows:
<gap reason="sampling" extent="2" unit="cm">
<desc>astrological figure</desc>
</gap>
That is, there were two stars on the easterly side and one to the west; ..

Source: [182]]

The <add> and elements may be used to record where words or phrases have been added or deleted
in the copy text. They are not appropriate where longer passages have been added or deleted, which span
several elements; for these, the elements <addSpan> and <delSpan> described in chapter 11.3.4. Additions and
Deletions must be used.

Additions to a text may be recorded for a number of reasons. Sometimes they are marked in a distinctive
way in the source text, for example by brackets or insertion above the line (supralinear insertion), as in the
following example, taken from a 19th century manuscript:

The story I am going to relate is true as to its main facts,
and as to the consequences <add place="above">of
these facts</add> from which this tale takes its title.

Source: [183]]

The <add> element should not be used to mark editorial changes, such as supplying a word omitted by
mistake from the source text or a passage present in another version. In these cases, either the <corr> or
<supplied> tags should be used, as discussed above in section 3.4.1. Apparent Errors, and in section 11.3.3.
Correction and Conjecture, respectively.

The <unclear> element is used to mark passages in the original which cannot be read with confidence,
or about which the transcriber is uncertain for other reasons, as for example when transcribing a partially
inaudible or illegible source. Its reason and resp attributes are used, as with the <gap> element, to indicate the
cause of uncertainty and the person responsible for the conjectured reading.

For example:

79

3. Elements Available in All TEI Documents

<1>And where the sandy mountain Fenwick scald</1>
<1>
<unclear reason="ink blot">The</unclear> sea between
yet hence his pray'r prevail'd
</1>

Source: [|148]]

or from a spoken text:

<p>... and then <unclear reason="passing truck">marbled queen</unclear>...</p>

Where the material affected is entirely illegible or inaudible, the <gap> element discussed above should be
used in preference.

The element is used to mark material which is deleted in the source but which can still be read with
some degree of confidence, as opposed to material which has been omitted by the encoder or transcriber
either because it is entirely illegible or for some other reason. This is of particular importance in transcribing
manuscript material, though deletion is also found in printed texts, sometimes for humorous purposes:

<1>0ne day I will sojourn to your shores</1>

<1>I live in the middle of England</1>

<l>But!</1>

<l>Norway! My soul resides in your watery

<del rend="overstrike">fiords fyords fiiords
</1>

<l>Inlets.</1>

Source: [|207]]

The rend attribute may be used to distinguish different methods of deletion in manuscript or typescript
material, as in this line from the typescript of Eliot's Waste Land:

<1>

<del rend="overtyped">Mein Frisch
<del type="overstrike">schwebt weht der Wind
</1>

Source: [|74]]

Deletion in manuscript or typescript is often associated with addition:

<1>
<del rend="overstrike">Inviolable
<add place="below">Inexplicable</add>
splendour of Corinthian white and gold
</1>

Source: [|74]]
The <subst> element discussed in 11.3.5. Substitutions provides a way of grouping additions and deletions of
this kind.

The element should not be used where the deletion is such that material cannot be read with
confidence, or read at all, or where the material has been omitted by the transcriber or editor for some other

80

3.5. Names, Numbers, Dates, Abbreviations, and Addresses

reason. Where the material deleted cannot be read with confidence, the <unclear> tag should be used with
the reason attribute indicating that the difficulty of transcription is due to deletion. Where material has been
omitted by the transcriber or editor, this may be indicated by use of the <gap> element. A deletion in which
some parts may be read but not others may thus be represented by one or more <gap> elements intermingled
with text, all contained by a element.

3.5 Names, Numbers, Dates, Abbreviations, and Addresses

This section describes a number of textual features which it is often convenient to distinguish from their
surrounding text. Names, dates, and numbers are likely to be of particular importance to the scholar treating a
text as source for a database; distinguishing such items from the surrounding text is however equally important
to the scholar primarily interested in lexis.

The treatment of these textual features proposed here is not intended to be exhaustive: fuller treatments for
names, numbers, measures, and dates are provided in the names and dates module (see chapter 13. Names,
Dates, People, and Places).

3.5.1 Referring Strings
A referring string is a phrase which refers to some person, place, object, etc. Two elements are provided to mark
such strings:
<rs> (referencing string) contains a general purpose name or referring string.
<name> (name, proper noun) contains a proper noun or noun phrase.
These elements are both members of the att.typed class, from which they inherit the following attributes:
att.typed provides attributes which can be used to classify or subclassify elements in any way.
@type characterizes the element in some sense, using any convenient classification scheme or
typology.
@subtype provides a sub-categorization of the element, if needed

which may be used to further categorize the kind of object referred to.
Examples include:

<p>

<q>My dear

<rs type="person">Mr. Bennet</rs>

</q>, said his lady to
him one day, <q>have you heard that <rs type="place">Netherfield Park</rs> is let at last?</g>
</p>

Source: [9]]

<p>Collectors of water-rents were appointed by the
<rs type="organization">Watering Committee</rs>.
They were paid a commission not exceeding four per
cent, and gave bond.</p>

Source: [4]]

<p>It being one of the principles of the
<rs type="org">Circumlocution Office</rs> never, on any
account whatsoever, to give a straightforward answer,

81

3. Elements Available in All TEI Documents

<rs type="person">Mr Barnacle</rs> said, <q>Possibly.</g>
</p>

Source: [62f]

As the following example shows, the <rs> element may be used for any reference to a person, place, etc., not
only to references in the form of a proper noun or noun phrase.

<p>
<q>My dear <rs type="person">Mr. Bennet</rs>
</q>, said
<rs type="person">his lady</rs> to him one day ...
</p>

Source: [9]

The <name> element by contrast is provided for the special case of referencing strings which consist only
of proper nouns; it may be used synonymously with the <rs> element, or nested within it if a referring string
contains a mixture of common and proper nouns. The following example shows an alternative way of encoding
the short sentence from Pride and Prejudice quoted above:

<p>
<g>My dear <name type="person">Mr. Bennet</name>,</q> said <rs type="person">his lady</rs> to him one day,
<gq>have you heard that <name type="place">Netherfield Park</name> is let at last?</q>

</p>
Source: [J9]
As the following example shows, a proper name may be nested within a referring string:
<rs>His Excellency the Life President, <name>Ngwazi Dr H. Kamuzu Banda</name>
</rs>
Source: [[145]

Simply tagging something as a name is generally not enough to enable automatic processing of personal
names into the canonical forms usually required for reference purposes. The name as it appears in the text
may be inconsistently spelled, partial, or vague. Moreover, name prefixes such as van or de la may or may not
be included as part of the reference form of a name, depending on the language and country of origin of the
bearer.

Two issues arise in this context: firstly, there may be a need to encode a regularised form of a name, distinct
from the actual form in the source to hand; secondly, there may be a need to identify the particular person,
place, etc. referred to by the name, irrespective of whether the name itself is normalized or not. The element
<reg>, introduced in 3.4.2. Regularization and Normalization is provided for the former purpose; the attributes
key or ref for the latter.

The key and ref attributes are common to all members of the att.canonical class and are defined as follows:

att.canonical provides attributes which can be used to associate a representation such as a name or title
with canonical information about the object being named or referenced.
@key provides an externally-defined means of identifying the entity (or entities) being named,
using a coded value of some kind.

@ref (reference) provides an explicit means of locating a full definition for the entity being
named by means of one or more URIs.

82

3.5. Names, Numbers, Dates, Abbreviations, and Addresses

A very useful application for them is as a means of gathering together all references to the same individual
or location scattered throughout a document:

<p>
<gq>My dear <rs key="BENM1" type="person"> Mr. Bennet</rs>,</q> said <rs key="BENM2" type="person">his
lady</rs> to him one day, <q>have you heard that <rs key="NETP1l" type="place">Netherfield Park</rs> is let at
last?</qg>
</p>

Source: [9]

<p>
<name key="VOM1" type="person">Mme. de Volanges</name> marie <rs key="VOM2">sa fille</rs>: c'est encore un
secret;
mais elle m'en a fait part hier.
</p>

Source: [122f]

The value of the key attribute may be an unexpanded code, as in the examples above, with no particular
significance. More usually however, it will be an externally defined code of some kind, as provided by a standard
reference source.

<p>
<name key="LHR" type="airport">Heathrow</name>
</p>

Source: [|1]]
The ref attribute can be used to point directly to some other resource providing more information about the

entity named by the element, such as an authority record in a database, an encylopaedia entry, another element
in the same or a different document etc.

<p>
<name
ref="http://en.wikipedia.org/wiki/Heathrow airport"
type="airport">Heathrow</name>
</p>

Source: [|1]]

This use should be distinguished from the use of a nested <reg> (regularization) element to provide the
standard form of a referring string, as in this example:

<p>My personal life during
the administration of <rs key="P0JA1" type="person">Col. Polk
(<reg>Polk, James K.</reg>)</rs> has but poorly compensated me for the
suspended enjoyments and pursuits of private and professional
spheres</p>

Source: [54]]

The <choice> element discussed in 3.4. Simple Editorial Changes may be used if it is desired to record both a
normalized form of a name and the name used in the source being encoded:

83

3. Elements Available in All TEI Documents

<p>
<name key="WADLM1" type="person">
<choice>
<orig>Walter de la Mare</orig>
<reg>de la Mare, Walter</reg>
</choice>
</name>

was born at <name key="Chl" type="place">Charlton</name>, in
<name key="KT1" type="county">Kent</name>, in 1873.
</p>

Source: [|201]]

The <index> element discussed in 3.8.2. Index Entries may be more appropriate if the function of the
regularization is to provide a consistent index:

<p>

<name type="place">Montaillou</name> is not a large parish.
At the time of the events which led to
<name type="person">Fournier<index>

<term>Benedict XII, Pope of Avignon (Jacques Fournier)</term>
</index>

</name>'s
investigations, the local population consisted of between 200 and 250 inhabitants.
</p>

Source: [124]

Although adequate for many simple applications, these methods have two inconveniences: if the name
occurs many times, then its regularised form must be repeated many times; and the burden of additional XML
markup in the body of the text may be inconvenient to maintain and complex to process. For applications such
as onomastics, relating to persons or places named rather than the name itself, or wherever a detailed analysis
of the component parts of a name is needed, the specialized elements described in chapter 13. Names, Dates,
People, and Places or the analytical tools described in chapter 18. Feature Structures should be used.

3.5.2 Addresses
These Guidelines propose the following elements to distinguish postal and electronic addresses:
<address> contains a postal address, for example of a publisher, an organization, or an individual.

<email> (electronic mail address) contains an e-mail address identifying a location to which e-mail
messages can be delivered.

These two elements constitute the class of model.addressLike elements; for other kinds of address this class
may be extended by adding new elements if necessary.

These Guidelines provide no particular means for encoding the substructure of an email address (for
example, distinguishing the local part from the domain part), nor of distinguishing personal email addresses
from generic or fictitious ones.

<email>editors@tei-c.org</email>

The simplest way of encoding a postal address is to regard it as a series of distinct lines, just as they might be
written on an envelope. The following element supports this view:

<addrLine> (address line) contains one line of a postal address.

84

3.5. Names, Numbers, Dates, Abbreviations, and Addresses

Here is an example of a postal address encoded using this approach:

<address>
<addrLine>110 Southmoor Road,</addrLine>
<addrLine>0xford 0X2 6RB,</addrLine>
<addrLine>UK</addrLine>

</address>

Alternatively, an address may be encoded as a structure of more semantically rich elements. The class
model.addrPart element class identifies a number of such possible components:
<street> a full street address including any name or number identifying a building as well as the name of
the street or route on which it is located.

<name> (name, proper noun) contains a proper noun or noun phrase.

<postCode> (postal code) contains a numerical or alphanumeric code used as part of a postal address to
simplify sorting or delivery of mail.

<postBox> (postal box or post office box) contains a number or other identifier for some postal delivery
point other than a street address.

model.nameLike groups elements which name or refer to a person, place, or organization.
model.persNamePart groups elements which form part of a personal name.

model.placeNamePart groups elements which form part of a place name.
Any number of elements from the model.addrPart class may appear within an address and in any order. None
of them is required.

Where code letters are commonly used in addresses (for example, to identify regions or countries) a useful
practice is to supply the full name of the region or country as the content of the element, but to supply the
abbreviatory code as the value of the global n attribute, so that (for example) an application preparing formatted
labels can readily find the required information. Other components of addresses may be represented using the
general-purpose <name> element or (when the additional module for names and dates is included) the more
specialized elements provided for that purpose.

Using just the elements defined by the core module, the above address could thus be represented as follows:

<address>
<street>110 Southmoor Road</street>
<name type="city">0xford</name>
<postCode>0X2 6RB</postCode>
<name type="country">United Kingdom</name>
</address>

The order of elements within an address is highly culture-specific, and is therefore unconstrained:

<address>
<name type="org">Universita di Bologna</name>
<name type="country">Italy</name>
<postCode>40126</postCode>
<name type="city">Bologna</name>
<street>via Marsala 24</street>

</address>

For further discussion of ways of regularizing the names of places, see section 3.5. Names, Numbers, Dates,
Abbreviations, and Addresses. A full postal address may also include the name of the addressee, tagged as above
using the general purpose <name> element.

85

3. Elements Available in All TEI Documents

When a schema includes the names and dates module discussed in chapter 13. Names, Dates, People, and
Places, a large number of more specific elements such as <country> or <settlement> will be available from the
class model.addrPart. The above example might then be encoded as follows:

<address>
<street>110 Southmoor Road</street>
<settlement>0xford</settlement>
<postCode>0X2 6RB</postCode>
<country>United Kingdom</country>
</address>

3.5.3 Numbers and Measures

This section describes elements provided for the simple encoding of numbers and measurements and gives
some indication of circumstances in which this may usefully be done. The following phrase level elements are
provided for this purpose:

<num> (number) contains a number, written in any form.
@type indicates the type of numeric value.

@value supplies the value of the number in standard form.

<measure> contains a word or phrase referring to some quantity of an object or commodity, usually
comprising a number, a unit, and a commodity name.
@type specifies the type of measurement in any convenient typology.

<measureGrp> (measure group) contains a group of dimensional specifications which relate to the same
object, for example the height and width of a manuscript page.

Like names or abbreviations, numbers can occur virtually anywhere in a text. Numbers are special in that
they can be written with either letters or digits (twenty-one, xxi, and 2I) and their presentation is language-
dependent (e.g. English 5th becomes Greek 5.; English 123,456.78 equals French 123.456,78).

For many kinds of application, e.g. natural-language processing or machine translation, numbers are not
regarded as ‘lexical’ in the same way as other parts of a text. For these and other applications, the <num>
element provides a convenient method of distinguishing numbers from the surrounding text. For other kinds
of application, numbers are only useful if normalized: here the <num> element is useful precisely because it
provides a standardized way of representing a numerical value.

For example:

<num value="33">xxxiii</num>

<num type="cardinal" value="21">twenty-one</num>
<num type="percentage" value="10">ten percent</num>
<num type="percentage" value="10">10%</num>

<num type="ordinal" value="5">5th</num>

<num type="fraction" value="0.5">one half</num>
<num type="fraction" value="0.5">1/2</num>

Sometimes it may be desired to mark something as numerical which cannot be accurately normalized, for
example an expression such as dozens; less frequently the number may be recognisable linguistically as such
but may use a notation with which the encoder is unfamiliar. To help in these situations, the <num> element
may also bear either or both of the following attributes from the att.ranging class:

86

3.5. Names, Numbers, Dates, Abbreviations, and Addresses

att.ranging provides attributes for describing numerical ranges.
@atLeast gives a minimum estimated value for the approximate measurement.

@atMost gives a maximum estimated value for the approximate measurement.

In its fullest form, a measure consists of a number, a phrase expressing units of measure and a phrase
expressing the commodity being measured, though not all of these components need be present in every case.
It may be helpful to distinguish measures from surrounding text for two reasons. Firstly, a measure may be
expressed using a particular notation or system of abbreviations which the encoder does not wish to regard as
lexical. Secondly, a quantitative application may wish to distinguish and normalize the internal components of
a measure, in order to perform calculations on them.

Consider, as an example of the first case, the following list of Celia's charms, in which the encoder has chosen
to make explicit the measurements:

<div n="2">
<list type="gloss">
<label>Age</label>
<item>Unimportant</item>
<label>Head</label>
<item>Small and round</item>
<label>Eyes</label>
<item>Green</item>
<label>Complexion</label>
<item>White</item>
<label>Hair</label>
<item>yellow</item>
<label>Features</label>
<item>Mobile</item>
<label>Neck</label>
<item>
<measure>13%"</measure>
</item>
<label>Upper arm</label>
<item>
<measure>ll"</measure>
</item>
<l--...-->
</list>
<l-- ... -->

</div>

Source: [13]]

In the same way, it may be convenient to mark representations of currency which might otherwise be
misinterpreted as lexical:

<p>...the sum of
<measure type="currency">12s 6d</measure>...</p>

In general, normalization of a measure will require specification of one or more of its three parts: the quantity,
the units, and possibly also the commodity being measured. This is accomplished by supplying values for the
three attributes quantity, unit, and commodity, which are supplied by the att.measurement class:

att.measurement provides attributes to represent a regularized or normalized measurement.
@quantity specifies the number of the specified units that comprise the measurement

87

3. Elements Available in All TEI Documents

@unit indicates the units used for the measurement, usually using the standard symbol for the
desired units.

@commodity indicates the substance that is being measured

With these attributes, the measurement of Celia's neck may be specified in a normalized form:

<measure quantity="13.75" unit="in">13%"</measure>

Such techniques are particularly useful when representing historical data such as inventories:

<list>
<item>
<measure
type="volume"
quantity="2"
unit="bag"
commodity="hops"> ii bags hops </measure>
</item>
<item>
<measure
type="volume"
quantity="6"
unit="truss"
commodity="cloth"> six trusses Woolen and linen goods </measure>
</item>
<item>
<measure
type="weight"
quantity="5"
unit="ton"
commodity="coal"> 5 tonnes coale
</measure>
</item>
</list>

Source: [|216]]

The <measureGrp> element is provided as a means of grouping several related measurements together, either
because the measurement involves several dimensions (for example height and width) or to avoid the need to
repeat all the normalizing attributes:

<measureGrp type="volume" unit="in">
<measure type="height" quantity="14">xiv</measure>
<measure type="width" quantity="5">v</measure>
<measure type="depth" quantity="10">x</measure>
</measureGrp>

3.5.4 Dates and Times

Dates and times, like numbers, can appear in widely varying culture- and language-dependent forms, and can
pose similar problems in automatic language processing. Such elements constitute the model.dateLike class, of
which the default members are:

<date> contains a date in any format.

88

3.5. Names, Numbers, Dates, Abbreviations, and Addresses

@calendar indicates the system or calendar to which the date represented by the content of this
element belongs.

<time> contains a phrase defining a time of day in any format.

These elements have some additional attributes by virtue of being members of the att.datable and att.duration
classes which, in turn, are members of the att.datable.w3c and att.duration.w3c classes. In particular, the when
attribute will be discussed here:

att.datable.w3c provides attributes for normalization of elements that contain datable events using the
W3C datatypes.
@when supplies the value of the date or time in a standard form, e.g. yyyy-mm-dd.

Dates can occur virtually anywhere in a text, but in some contexts (e.g. bibliographic citations) their
encoding is reccommended or required rather than optional. Times can also appear anywhere but are generally
optional.

Partial dates or times (e.g. 1990, September 1990, twelvish) can be expressed in the when attribute by simply
omitting a part of the value supplied. Imprecise dates or times (for example early August, some time after ten
and before twelve) may be expressed as date or time ranges.

These mechanisms are useful primarily for fully specified dates or times known with certainty. If component
parts of dates or times are to be marked up, or if a more complex analysis of the meaning of a temporal
expression is required, the techniques described in chapter 13. Names, Dates, People, and Places should be used
in preference to the simple method outlined here.

Where the certainty (i.e. reliability) of the date or time is in question, the encoder should record this fact
using the mechanisms discussed in chapter 21. Certainty, Precision, and Responsibility. The same chapter also
discusses various methods of recording the precision of numerical or temporal assertions.

The when attribute is a useful way of normalizing or disambiguating dates and times which can appear in
many formats, as the following examples show:

<date when="1980-02-12">12/2/1980</date>

Given on the <date when="1977-06-12">Twelfth Day of June
in the Year of Our Lord One Thousand Nine Hundred and
Seventy-seven of the Republic the Two Hundredth and first
and of the University the Eighty-Sixth.</date>

The when attribute always supplies a normalized representation of the date given as content of the <date>
element. The format used should be a valid W3C schema datatype.* Some typical examples follow:

“The datatypes are taken from the W3C Recommendation XML Schema Part 2: Datatypes Second Edition. The permitted datatypes are:
« date

o |gYear

« gMonth

+ [gDay

+ gYearMonth
« gMonthDay
o |time

« dateTime

There is one exception: these Guidelines permit a time to be expressed as only a number of hours, or as a number of hours and minutes, as per ISO
8601:2004 section 4.2.2.3 and 4.3.3. The W3C time and dateTime datatypes require that the minutes and seconds be included in the normalized value
if they are to be correctly processed for example when sorting.

89

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#gYear
http://www.w3.org/TR/xmlschema-2/#gMonth
http://www.w3.org/TR/xmlschema-2/#gDay
http://www.w3.org/TR/xmlschema-2/#gYearMonth
http://www.w3.org/TR/xmlschema-2/#gMonthDay
http://www.w3.org/TR/xmlschema-2/#time
http://www.w3.org/TR/xmlschema-2/#dateTime

3. Elements Available in All TEI Documents

<date when="2001">The

year 2001</date>

<date when="2001-09">September 2001</date>

<date when="2001-09-11">11 Sept 0l</date>

<date when="--09-11">9/11</date>

<date when="--09">September</date>

<date when="---11">Eleventh of the month</date>

<time when="08:48:00">8:48</time>

<date when="2001-09-11T12:48:00">Sept 11th, 12 minutes before 9 am</date>

Note in the last example the use of a normalized representation for the date string which includes a time: this
example could thus equally well be tagged using the <time> element.
The following examples demonstrate the use of the <date> element to mark a period of time:

<p>Those five years —

<date from="1918" t0="1923">1918 to 1923</date>
— had been, he suspected,

somehow very important.</p>

Source: [|221]]

<p>The Eddic poems are preserved in a unique

manuscript (Codex Regius 2365) from <date notBefore="1250" notAfter="1300">the second half of the thirteenth
century</date>, and <title>Hervarar
saga</title> dates from <date when="1300">around 1300</date>.</p>

Source: [6]]

The calendar attribute may be used to specify a date in any calendar system,; if the when attribute is also
supplied, it should specify the equivalent date in the Gregorian calendar.

3.5.5 Abbreviations and Their Expansions

It is sometimes desirable to mark abbreviations in the copy text, whether to trigger special processing for them,
to provide the full form of the word or phrase abbreviated, or to allow for different possible expansions of the
abbreviation. Abbreviations may be transcribed as they stand, or expanded; they may be left unmarked, or
marked using these tags:

<abbr> (abbreviation) contains an abbreviation of any sort.
<expan> (expansion) contains the expansion of an abbreviation.

The <abbr> element is useful as a means of distinguishing semi-lexical items such as acronyms or jargon:

We can sum up the above discussion as follows: the identity of a
<abbr>CC</abbr> is defined by that calibration of values which
motivates the elements of its <abbr>GSP</abbr>;

Source: [101]

Every manufacturer of <abbr>3GL</abbr> or <abbr>4GL</abbr>
languages is currently nailing on <abbr>00P</abbr> extensions.

90

3.6. Simple Links and Cross-References

3.6

Source: [|71f]

The type attribute may be used to distinguish types of abbreviation by their function:

<abbr type="title">Dr.</abbr>
<abbr type="initial">M.</abbr> Deegan is
the Director of the <abbr type="acronym">CTI</abbr> Centre for Textual Studies.

Abbreviations such as Dr. M. above may be treated as two abbreviations, as above, or as one:

<abbr>Dr. M.</abbr> Deegan is
the Director of the <abbr>CTI</abbr> Centre for Textual Studies.

The <expan> element may be used simply to record that an abbreviation has been silently expanded by
the encoder, perhaps for reasons of house style or editorial policy. It should always include the whole of an
abbreviated phrase or word. More usually however this will be combined with the <abbr> element inside a
<choice> element to record both the abbreviation and its expansion:

the

<choice>
<expan>World Wide Web Consortium</expan>
<abbr>W3C</abbr>

</choice>

Nested abbreviations may also be handled in this way:

<choice>
<abbr>RELAXNG</abbr>
<expan>regular
language for <choice>
<abbr>XML</abbr>
<expan>extensible markup
language</expan>
</choice>, next
generation</expan>
</choice>

Abbreviation is a particularly important feature of manuscript and other source materials, the transcription
of which needs more detailed treatment than is possible using these simple elements. A more detailed set
of recommendations is discussed in 11.3. Altered, Corrected, and Erroneous Texts, which includes additional
elements made available for the purpose by the transcr module.

Simple Links and Cross-References

Cross-references or links between one location in a document and one or more other locations, either in the
same or different XML documents, may be encoded using the elements <ptr> and <ref>, as discussed in this
section. These elements both ‘point’ from one location in a document, the place that the element itself appears,
to another (or to several), specified by the target attribute. Linkages of several other kinds are also provided
for in these guidelines; see further chapter 16. Linking, Segmentation, and Alignment.

The value of the target attribute, wherever it appears, provides a way of pointing to some other element
using a method standardized by the W3C consortium, and known as the XPointer mechanism. This permits

91

3. Elements Available in All TEI Documents

a range of complexity, from the very simple (a reference to the value of the target element's xml:id attribute)
to the more complex usage of a full URI with embedded XPointers. For example, the source of the following
paragraph looks something like this:

<p>For an introduction

to the use of links in general, see <ptr target="#SA"/>; for the

complete XPointer specification, see <ptr
target="http://www.w3.0rg/TR/xptr-framework/"/>,

<ptr target="http://www.w3.0rg/TR/xptr-element/"/>,

<ptr target="http://www.w3.0rg/TR/xptr-xmlns/"/>, and

<ptr
target="http://www.w3.0rg/TR/xptr-xpointer/#xpointer(id('chum')/quote)"/>;

for a discussion of TEI schemes for XPointer, see

<ptr target="#SATS"/>.</p>

Alternatively, if no explicit link is to be encoded, but it is simply required to mark the phrase as a cross-reference,
the <ref> element may be used without a target attribute.

For an introduction to the use of links in general, see 16. Linking, Segmentation, and Alignment; for
the complete XPointer specification, see http://www.w3.0rg/TR/xptr-framework/, http://www.w3.org/
TR/xptr-element/, http://www.w3.0rg/TR/xptr-xmlns/, and http://www.w3.0rg/TR/xptr-xpointer/
#xpointer(id('chum')/quote); for a discussion of TEI schemes for XPointer, see 16.2.4. TEI XPointer
Schemes.

<ptr/> (pointer) defines a pointer to another location.
@target specifies the destination of the pointer by supplying one or more URI References

@cRef (canonical reference) specifies the destination of the pointer by supplying a canonical
reference from a scheme defined in a <refsDecl> element in the TEI header

<ref> (reference) defines a reference to another location, possibly modified by additional text or comment.
@target specifies the destination of the reference by supplying one or more URI References

@cRef (canonical reference) specifies the destination of the reference by supplying a canonical
reference from a scheme defined in a <refsDecl> element in the TEI header

The elements <ptr> and <ref> are the default members of the phrase-level model class model.ptrLike. As
members of the class att.pointing, they also carry the following attributes:
att.pointing defines a set of attributes used by all elements which point to other elements by means of one
or more URI references.
@type categorizes the pointer in some respect, using any convenient set of categories.

@evaluate specifies the intended meaning when the target of a pointer is itself a pointer.

The two elements may be used in the same way; the difference between them is simply that while the <ptr>
element is empty, the <ref> element may contain phrases specifying, or describing more exactly, the target of
a cross-reference, which form the content of the element. Since its content thus serves as a human-readable
pointer, in the simplest case a <ref> element need not identify its target in any other way. For example:

See <ref>section 12 on page 34</ref>.

More usually, it will be desirable to identify the target of the cross-reference using the target attribute, so
that processing software can access it directly, for example to implement a linkage, to generate an appropriate
reference, or to give an error message if it cannot be found. Assuming that section 12 in the previous example
has been tagged

92

http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-element/
http://www.w3.org/TR/xptr-element/
http://www.w3.org/TR/xptr-xmlns/
http://www.w3.org/TR/xptr-xpointer/#xpointer(id('chum')/quote)
http://www.w3.org/TR/xptr-xpointer/#xpointer(id('chum')/quote)

3.6. Simple Links and Cross-References

<divl xml:id="SEC12">
<= >

</divl>

then the same cross-reference might more exactly be encoded as

See especially <ref target="#SEC12">section 12 on page 34</ref>.

If the text for the cross-reference is to be generated according to a fixed pattern, or if no text is to appear in
the body of the cross-reference, the <ptr> element would be used as follows:

See in particular <ptr target="#SEC12"/>.

A cross-reference may point to any number of locations simultaneously, simply by giving more than one
identifier as the value of its target attribute. This may be particularly useful where an analytic index is to be
encoded, as in the following example:

<list>
<item>Saints aid rejected in mel. <ptr target="#p299"/>
</item>
<item>Sallets censured <ptr target="#pl43 #pl44"/>
</item>
<item>Sanguine mel. signs <ptr target="#p263"/>
</item>
<item>Scilla or sea onyon, a purger of mel. <ptr target="#p442"/>
</item>
</list>

Source: [227]]

Here the targets of the cross-references are simply page numbers; it is assumed that corresponding elements
with identifiers p299, p143, etc. have been provided in the body of the text, for example as page breaks

<pb xml:id="p143"/>

;EQ xml:id="p144"/>

QEL xml:id="p263"/>

;;.)l; xml:id="p299"/>

<pb xml:id="p442"/>

The type attribute may be used, as elsewhere, to categorize the cross-reference according to any system of
importance to the encoder. If bibliographic references require special processing (e.g. in order to provide a
consistent short-form reference), they might be tagged thus:

93

3. Elements Available in All TEI Documents

3.7

Similar forms, often called

<term rend="ldquo rdquo">rewriting systems</term>, have a long history

among mathematicians, but the specific form of <ptr target="#fig22"/>

was first studied extensively by Chomsky <ptr type="bibliog" target="#chom59"/>.

<l-- ... -->

<figure xml:id="fig22">

<l-- ... -->

</figure>

<!-- elsewhere, in the bibliography -->

<bibl xml:id="chom59">

<!-- citation for the book referenced above -->
</bibl>

Source: [199]]

The value bibliog for the type attribute on the second <ptr> element here might be used to indicate that the
object being referenced here is a bibliographic entry rather than a simple cross-reference to an illustration, as
is the first <ptr>. In either case, the value of the target attribute is a pointer to some other element.

The <ptr> and <ref> elements have many applications in addition to the simple cross-referencing facilities
illustrated in this section. In conjunction with the analytic tools discussed in chapters 16. Linking, Segmentation,
and Alignment, 17. Simple Analytic Mechanisms, and 18. Feature Structures, they may be used to link analyses of a
text to their object, to combine corresponding segments of a text, or to align segments of a text with a temporal
or other axis or with each other.

Lists

The following elements are provided for the encoding of lists, their constituent items, and the labels or headings
associated with them:

<list> (list) contains any sequence of items organized as a list.

<item> contains one component of a list.

<label> contains the label associated with an item in a list; in glossaries, marks the term being defined.

<head> (heading) contains any type of heading, for example the title of a section, or the heading of a list,
glossary, manuscript description, etc.

<headLabel> (heading for list labels) contains the heading for the label or term column in a glossary list or
similar structured list.

<headitem> (heading for list items) contains the heading for the item or gloss column in a glossary list or
similar structured list.

The <list> element should be used to mark any kind of list: numbered, lettered, bulleted, or unmarked. Lists
formatted as such in the copy text should in general be encoded using this element, with an appropriate value
for the type attribute. Lists given as run-on text may also be encoded using this element, where this is felt to
be appropriate.

Each distinct item in the list should be encoded as a distinct <item> element. If the numbering or other
identification for the items in a list is unremarkable and may be reconstructed by any processing program, no
enumerator need be specified. If however an enumerator is retained in the encoded text, it may be supplied
either by using the n attribute on the <item> element, or by using a <label> element. The following examples
are thus equivalent:

94

3.7. Lists

I will add two facts, which have seldom occurred in
the composition of six, or even five quartos.
<list rend="runon" type="ordered">
<label>(1)</label>
<item>My first rough manuscript, without any
intermediate copy, has been sent to the press.</item>
<label>(2)</label>
<item>Not a sheet has been seen by any human
eyes, excepting those of the author and the printer:
the faults and the merits are exclusively my own.</item>
</list>

Source:

I will add two facts, which have seldom occurred in
the composition of six, or even five quartos.
<list rend="runon" type="ordered">
<item n="1">My first rough manuscript, without any
intermediate copy, has been sent to the press.</item>
<item n="2">Not a sheet has been seen by any human
eyes, excepting those of the author and the printer:
the faults and the merits are exclusively my own.</item>
</list>

Source:

The two styles may not be mixed in the same list: if one item is preceded by a label, all must be.

IEL]

IEL

A list need not necessarily be displayed in list format. For example, the following is a reasonable encoding

of a list which (in the original) is simply printed as a single paragraph:

On those remote pages it is written that animals are
divided into <list>
<item n="a">those that belong to the Emperor, </item>
<item n="b">embalmed ones, </item>
<item n="c">those that are trained, </item>
<item n="d">suckling pigs, </item>
<item n="e">mermaids, </item>
<item n="f">fabulous ones, </item>
<item n="g">stray dogs, </item>
<item n="h">those that are included in this classification, </item>
<item n="i">those that tremble as if they were mad, </item>
<item n="j">innumerable ones, </item>
<item n="k">those drawn with a very fine camel's-hair brush, </item>
<item n="1">others, </item>
<item n="m">those that have just broken a flower vase, </item>
<item n="n">those that resemble flies from a distance. </item>
</list>

Source:

[21]]

A list may be given a heading or title, for which the <head> element should be used, as in the next example,
which also demonstrates simple use of the <label> element to mark a tabular or glossary list in which each item

is associated with a word or phrase rather than a numeric or alphabetic enumerator:

95

3. Elements Available in All TEI Documents

<list type="gloss">
<head>Report of the conduct and progress of Ernest Pontifex.
Upper Vth form — half term ending Midsummer 1851</head>
<label>Classics</label>
<item>Idle listless and unimproving</item>
<label>Mathematics</label>
<item>ditto</item>
<label>Divinity</label>
<item>ditto</item>
<label>Conduct in house</label>
<item>Orderly</item>
<label>General conduct</label>
<item>Not satisfactory, on account of his great
unpunctuality and inattention to duties</item>
</list>

Source: [28]]

In such a list, the individual items have internal structure. In complex cases, where list items contain many
components, the list is better treated as a table, on which see chapter |14. Tables, Formule, and Graphics. A
particularly important instance of the simple two-column table is the ‘glossary list, which should be marked
by the tag <list type="gloss">. In such lists, each <label> element contains a term and each <item> its gloss; it
is a semantic error for a list tagged with type="gloss" not to have labels. For example:

<list type="gloss">
<head>Unit Three — Vocabulary</head>
<label xml:lang="la">acerbus, -a, -um </label>
<item>bitter, harsh</item>
<label xml:lang="la">ager, agri, M. </label>
<item>field</item>
<label xml:lang="la">audio, 1ire,
ivi, 1tus </label>
<item>hear, listen (to)</item>
<label xml:lang="la">bellum, -1, N. </label>
<item>war</item>
<label xml:lang="la">bonus, -a, -um </label>
<item>good</item>
</list>

Source: [|155]]

Additionally, the <term> and <gloss> elements discussed in section 3.3.4. Terms, Glosses, Equivalents, and
Descriptions might be used to make explicit the role that each column in the glossary list has, as follows:

<list type="gloss">
<head>Unit Three — Vocabulary</head>
<label>
<term xml:lang="la">acerbus, -a, -um</term>
</label>
<item>
<gloss>bitter, harsh</gloss>
</item>
<label>
<term xml:lang="la">ager, agri, M. </term>
</label>

96

3.7. Lists

<item>
<gloss>field</gloss>

</item>

<label>

<term xml:lang="la">audio, -ire, -ivi, -itus</term>

</label>
<item>

<gloss>hear, listen (to)</gloss>

</item>
<label>

<term xml:lang="la">bellum, -1,

</label>

<item>
<gloss>war</gloss>

</item>

<label>
<term xml:lang="la">bonus, -a,

</label>

<item>
<gloss>good</gloss>

</item>

</list>

N. </term>

-um</term>

Source:

[1155]

Note in the above examples the use of the global xml:lang attribute to specify on the <label> (or <term>)
element what language the term is from. For further discussion of the xml:lang attribute see section 1.3.1.1.
Global Attributes, and section vi.l1 Language identification. A more elaborate markup for this glossary would
distinguish the headword forms from the grammatical information (principal parts and gender), perhaps using
elements taken from 9. Dictionaries.

In addition to the <head> element used to supply a title or heading for the whole list, headings for the two
columns of a glossary-style list may be specified using the two special elements <headLabel> and <headItem>:

The simple, straightforward statement of an idea is
preferable to the use of a worn-out expression.

<list type="gloss">
<headLabel>TRITE</headlLabel>

<headItem>SIMPLE, STRAIGHTFORWARD</headItem>

<label>bury the hatchet </label>

<item>stop fighting, make peace</item>

<label>at loose ends </label>
<item>disorganized</item>
<label>on speaking terms </label>
<item>friendly</item>
<label>fair and square </label>
<item>completely honest</item>
<label>at death's door </label>
<item>near death</item>

</list>

Source:

[217]]

The elements <label>, <head>, <headLabel>, and <headItem> may contain only phrase-level elements. The
<item> element however may contain paragraphs or other ‘chunks, including other lists. In this example, a

glossary list contains two items, each of which is itself a simple list:

97

3. Elements Available in All TEI Documents

<list type="gloss">
<label>EVIL</label>
<item>
<list type="simple">
<item>I am cast upon a horrible desolate island, void
of all hope of recovery.</item>
<item>I am singled out and separated as it were from
all the world to be miserable.</item>
<item>I am divided from mankind — a solitaire; one
banished from human society.</item>
</list>
</item>
<label>G00D</label>
<item>
<list type="simple">
<item>But I am alive; and not drowned, as all my
ship's company were.</item>
<item>But I am singled out, too, from all the ship's
crew, to be spared from death...</item>
<item>But I am not starved, and perishing on a barren place,
affording no sustenances....</item>
</list>
</item>
</list>

Source: [57]]

Lists of different types may be nested to arbitrary depths in this way.

3.8 Notes, Annotation, and Indexing

3.8.1 Notes and Simple Annotation

The following elements are provided for the encoding of discursive notes, whether already present in the copy
text or supplied by the encoder:

<note> contains a note or annotation.

A note is any additional comment found in a text, marked in some way as being out of the main textual
stream. All notes should be marked using the same tag, <note>, whether they appear as block notes in the
main text area, at the foot of the page, at the end of the chapter or volume, in the margin, or in some other
place.

Notes may be in a different hand or typeface, may be authorial or editorial, and may have been added later.
Attributes may be used to specify these and other characteristics of notes, as detailed below.

Where possible, the body of a note should be inserted in the text at the point at which its identifier or mark
first appears; we term this the note's point of attachment. This may not always be possible for example with
marginal notes, which may not be anchored to an exact location. For ease of processing, it may be adequate
to position marginal notes before the relevant paragraph or other element. In printed texts, it is sometimes
conventional to group notes together at the foot of the page on which their points of attachment appear. This
practice is not generally recommended for TEI-encoded texts, since the pagination of a particular printed text
is unlikely to be of structural significance. In some cases, however, it may be desirable to transcribe notes not
at their point of attachment to the text but at their point of appearance, typically at the end of the volume, or
the end of the chapter. In such cases, the target attribute of the <note> should be used to indicate the point of
attachment.

98

3.8. Notes, Annotation, and Indexing

In cases where the note is attached not to a point but to a span of text, the target attribute should use an
appropriate pointer expression, for example using the range() function to specify the span of attachment. For
further discussion of pointing to points and spans in the text, see section 3.6. Simple Links and Cross-References.

In the following example, the type attribute is used to categorise the note as a gloss:

<1>The self-same moment I could pray</1>

<l>And from my neck so free</1>

<1>The albatross fell off, and sank</1>

<l>Like lead into the sea.

<note type="gloss" place="margin">The spell begins to break</note>
</1>

Source: [/45]]

As the <note> appears within an <I> element, we may infer that its point of attachment is in the margin adjacent
to the line in question. In the following version of the same text, however, it may be inferred that the note applies
to the whole of the stanza:

<lg>

<1>The self-same moment I could pray</1>

<1>And from my neck so free</1>

<1>The albatross fell off, and sank</1>

<l>Like lead into the sea.</1>

<note type="gloss" place="margin">The spell begins to break</note>
</1lg>

Source: [45]]

In the following example, a note which appears at the foot of the page in the printed source is given at its
point of attachment within the text. The global n attribute is used to indicate the note number:

Collections are ensembles of

distinct entities or objects of any sort.<note n="1" place="bottom">We
explain below why we use the uncommon term
<mentioned>collection</mentioned> instead of the expected
<mentioned>set</mentioned>. Our usage corresponds to the
<mentioned>aggregate</mentioned> of many mathematical writings and to
the sense of <mentioned>class</mentioned> found in older logical
writings.</note> The elements ...

Source: [123]

In addition to transcribing notes already present in the copy text, researchers may wish to add their own
notes or comments to it. The <note> element may be used for either purpose, but it will usually be advisable to
distinguish the two categories. One way might be to use the type attribute shown above, categorizing notes as
authorial, editorial, etc. Where notes derive from many sources, or where a more precise attribution is required,
the resp attribute may be used to point to a definition of the person or other agency responsible for the content
of the note.

As a simple example, an edition of the Ancient Mariner might include both Coleridge's original glosses and
those of a modern commentator:

99

3. Elements Available in All TEI Documents

<lg>

<l-- ... -->
<note place="margin" resp="#STC" type="gloss">The spell begins to break</note>
<note place="foot" resp="#JLL">The turning point of the poem...</note>

</1lg>

Source: [45]]

For this to be valid, the codes #JLL and #STC must point to some more information identifying the agency
concerned. The syntax used is identical to that used for other cross-references, as discussed in 3.6. Simple Links
and Cross-References; thus in this case, the TEI Header for this text might contain a title statement like the
following:

<titleStmt>
<title>The Rime of the Ancient Mariner: an annotated edition</title>
<author xml:id="STC">Samuel Taylor Coleridge</author>
<editor xml:id="JLL">John Livingston Lowes</editor>

</titleStmt>

When annotating the electronic text by means of analytic notes in some structured vocabulary, e.g. to specify
the topics or themes of a text, the and <interp> elements may be more effective than the free form
<note> element; these elements are available when the module for simple analysis is selected (see section 17.3.
Spans and Interpretations).

3.8.2 Index Entries

The indexing of scholarly texts is a skilled activity, involving substantial amounts of human judgment and
analysis. It should not therefore be assumed that simple searching and information retrieval software will be
able to meet all the needs addressed by a well-crafted manual index, although it may complement them for
example by providing free text search. The role of an index is to provide access via keywords and phrases
which are not necessarily present in the text itself, but must be added by the skill of the indexer.

3.8.2.1 Pre-existing indexes

When encoding a pre-existing text, therefore, if such an index is present it may be advisable to retain it
along with the text, rather than attempt to regenerate it automatically. Elements discussed elsewhere in these
Guidelines may be used for this purpose. For example, the <divl> element or <div> element may be used to
mark the section of the text containing the index and the <list> element might be used to mark the index itself,
each entry being represented by an <item> element, possibly containing within it a series of <ptr> or <ref>
elements, as follows:

<div type="index">
<l--,..-->
<list type="index">
<item>Women, how cause of mel. <ref>193</ref>; their vanity in
apparell taxed, <ref>527</ref>; their counterfeit tears
<ref>547</ref>; their vices <ref>601</ref>, commended,
<ref>624</ref>.</item>
<item>Wormwood, good against mel. <ref>443</ref>
</item>
<item>World taxed, <ref>181l</ref>
</item>

100

3.8. Notes, Annotation, and Indexing

<item>Writers of the cure of mel. 295</item>
<l--...-->
</list>
</div>

Source: [227]]

Note that this simple representation does not capture the nested structure of the first of these index entries.
A more accurate representation might entail the use of nested lists like the following:

<item>Women,
<list>
<item>how cause of mel. <ref>193</ref>;</item>
<item>their vanity in apparell taxed, <ref>527</ref>;</item>
<item>their counterfeit tears <ref>547</ref>;</item>
<item>their vices
<list>
<item>
<ref>601</ref>,</item>
<item> commended, <ref>624</ref>.</item>
</list>
</item>
</list>
</item>

Source: [227]]

The page references, encoded simply as <ref> elements above, might also include direct links to the
appropriate location in the encoded text, using (for example) a target attribute to supply the identifier of an
associated page break element:

<!-- 1in the text --><pb xml:id="P624"/>
<!-- start of page 624 -->

<!-- in the index -->

<ref target="#P624">624</ref>

For further discussion of this and alternative ways of encoding such links see the discussion in section I6.
Linking, Segmentation, and Alignment. Note that similar methods may also be used to encode a table of contents,
as further exemplified in section 4.5. Front Matter.

3.8.2.2 Auto-generated indexes

It can also be useful, however, to generate a new index from a machine-readable text, whether the text is being
written for the first time with the tags here defined, or as an addition to a text transcribed from some other
source. Depending on the complexity of the text and its subject matter, such an automatically-generated index
may not in itself satisfy all the needs of scholarly users. However it can assist a professional indexer to construct
a fully adequate index, which might then be post-edited into the digital text, marked-up along the lines already
suggested for preserving pre-existing index material.

Indexes generally contain both references to specific pages or sections and references to page ranges or
sequences. The same element is used in either case:

<index> (index entry) marks a location to be indexed for whatever purpose.

Like the <interp> element described in 17.3. Spans and Interpretations this element may be used simply to
provide descriptive or interpretive label of some kind for any location within a text, to be processed in any

101

3. Elements Available in All TEI Documents

way by analytic software, but its main purpose is to facilitate the generation of an index for a printed version
of the text. An <index> element may be placed anywhere within a text, between or within other elements.
The headwords to be used when making up this index are given by the <term> elements within the <index>
element. The location of the generated index might be specified by means of a processing instruction within
the text, such as the following (the exact form of the PI is of course dependent on the application software in
use):

<?tei indexplacement ?>

Alternatively, the special purpose <divGen> element might be used.
In the simplest case, a single headword is supplied by an <term> elements contained by an <index> element:

<p>The students understand procedures for Arabic lemmatisation
<index>
<term>Lemmatization, Arabic</term>
</index>and are beginning to build parsers.</p>

The effect of this will be to generate an index entry for the term ‘Lemmatization, referencing the location of
the original <index> element.

If the subject of Arabic lemmatization is treated at length in a text, then the index entry generated may need
to reference a sequence of locations (e.g. page numbers). In such a case it will be necessary to identify the end
of the relevant span of text as well as its starting point. This is most conveniently done by supplying an empty
<anchor> element (as discussed in chapter 16. Linking, Segmentation, and Alignment) at the appropriate point
and pointing to it from the <index> element by means of its spanTo attribute, as in this example:

<p>We now turn to the
topic of Arabic lemmatisation
<index spanTo="#ALAMEND">
<term>Lemmatization, Arabic</term>
</index> concerning which it is important to note

<!-- much learned material omitted here -->
and now we can build our parser.<anchor xml:id="ALAMEND"/>
</p>

This would generate the same index entries as the previous example, but the reference would be to the whole
span of text between the location of the <index> element and the location of the element identified by the code
ALAMEND, rather than a single point, and thus might (for example) include a sequence of page numbers.

Although the position of the <index> element in the text provides the target location that will be specified
in the generated index entry, no part of the text itself is used to construct that entry. Index terms appearing in
the entry come solely from the content of <term> elements, which consequently may have to repeat words or
phrases from the text proper. This need not be done verbatim, thus giving scope for normalization of spelling
(as in the example above) or other modifications which may assist generation of an index in a desired form or
sequence.

Sometimes, for example when index terms are taken from a different language or consist of mathematical
formulae or other expressions, even a normalized form of an index term may be insufficent for an application
to order it exactly as desired. The sortKey attribute may be used to address this problem, as in the following
example:

102

3.8. Notes, Annotation, and Indexing

<p>The @ operator
<index>
<term sortKey="0000">@</term>
</index> precedes an
attribute name</p>

Here, an entry for the symbol @ will appear in the index, but will be sorted alphabetically as if it were the
string 0000. This technique is also useful when an index entry is to contain some non-Unicode character or
glyph represented by the <g> element discussed in chapter 5. Representation of Non-standard Characters and
Glyphs. In the following example, we assume that somewhere a definition for this glyph has been provided
using the elements described in chapter 5. Representation of Non-standard Characters and Glyphs, and given the
code PrinceGlyph:

<char xml:id="PrinceGlyph">
<!-- definition of the glyph here -->
</char>
<p>The Artist formerly known as Prince <index>

<term sortKey="Prince">

<g ref="#PrinceGlyph"/>
</term>
</index>...</p>

Note that if no value is supplied for the sortKey attribute, a sorting application should always use the content
of the <term> element as a sort key.

It is common practice to compile more than one index for a given text. A biography of a poet, for example,
may offer an index of references to poems by the subject of the study, another index of works by other writers,
an index of places or historical personages etc. The indexName attribute is used to assigning index terms and
locations to one or more specific indexes:

<p>Sir John Ashford
<index indexName="INDEX-PERSONS">
<term>Ashford, John</term>
</index> was,
coincidentally, born in
<index indexName="INDEX-PLACES">
<term>Ashford
(Kent)</term>
</index>Ashford...</p>

Multi-level indexing is particularly common in scholarly documents. For example, as well as entries such as
TEI, or markup, an index may contain structured entries like TEI, markup practices, index terms, where a top
level entry TEI is followed by a number of second-level subcategories, any or all of which may have a third-
level list attached to them and so on. In order to reflect such a hierarchical index listing, <index> elements
may be nested to the required depth. For example, suppose that we wish to make a structured index entry for
‘lemmatisation” with subentries for ‘Arabic), ‘Sanskrit, etc. The example at the start of this section might then
be encoded with nested <index> elements:

<p>The students understand procedures for Arabic lemmatisation
<index>

103

3. Elements Available in All TEI Documents

<term>lemmatization</term>
<index>
<term>arabic</term>
</index>
</index>
L </p>

The index entry from Burton's Anatomy of Melancholy quoted above might be generated in a similar way.
To generate such an entry, the body of the text might include, at page 193, an <index> element such as

<index>
<term>Women</term>
<index>
<term>how cause of mel.</term>
</index>
</index>

Source: [227]]

. Similary, page 601 of the body text would include an <index> element like the following:

<index>
<term>Women</term>
<index>
<term>their vices</term>
</index>
</index>

while the <index> element at page 624 would have a structure like the following:

<index>
<term>Women</term>
<index>
<term>their vices</term>
<index>
<term>commended</term>
</index>
</index>
</index>

When processing such <index> elements, the duplication required to make the structure explicit will
normally be removed, so as to produce entries like those quoted above. However, this is not required by the
encoding recommended here.

As noted above, either a processing instruction or a <divGen> element may be used to mark the place at
which an index generated from <index> elements should be inserted into the output of a processing program;
typically but not necessarily this will be at some point within the back matter of the document. If the <divGen>
element is used, then the type attribute should be used to specify which kind of index is to be generated, and
its value should correspond with that of the indexName attribute on the relevant <index> elements.

104

3.9. Graphics and other non-textual components

3.9

<back>
<div type="appendix">
<head>Bibliography</head>
<listBibl>
<bibl> ... </bibl>
</1listBibl>
</div>
<divGen n="Index Nominum" type="INDEX-NAMES"/>
<divGen n="Index Loci" type="INDEX-PLACES"/>
</back>

As this example shows, the global n attribute may also be used to specify a name or identifier for the generated
index itself in the usual way. Any additional headings etc. required for the generated index must be specified
as content of the <divGen> element.

<back>
<divGen n="Al" type="INDEX-NAMES">
<head>An Index of Names</head>
</divGen>
</back>

If a processing instruction is used, then these parameters for the generated index may be supplied in some
other way.

One final feature frequently found in manually-created indexes to printed works cannot readily be encoded
by the means provided here, namely cross-references internal to the index term listing. For example, if all
references to the TEI in a text have been indexed using the index term Text Encoding Initiative, it may also be
helpful to include an entry under the term TEI containing some text such as ‘see Text Encoding Initiative’ Such
internal cross-references must be added as part of the post-editing phase for an auto-generated index.

Graphics and other non-textual components

Graphics, such as illustrations or diagrams, appear in many different kinds of text, and often with different
purposes. In some cases, the graphic is an integral part of a text (indeed, some texts — comic books for example
— may be almost entirely graphic); in others the graphic may be a kind of optional extra. In some cases, the
text may be incomprehensible unless the graphic is included; in others, the presence of the graphic adds very
little to the sense of the work. It will therefore be a matter of encoding policy as to whether or how a graphic
found in a source text is transferred to a digital version of the same. In documents which are ‘born digital,
graphics and other forms of non-textual element may be particularly salient, but their inclusion in an archival
form of the document concerned remains an editorial decision.

Considered as structural components, graphics may be anchored to a particular point in the text, or they
may float either completely freely, or within some defined scope, such as a chapter or section. Graphics of this
kind often contain associated text such as a heading or label, and may also nest hierarchically. These Guidelines
recommend the following different elements for these two cases:

<figure> groups elements representing or containing graphic information such as an illustration or figure.
<graphic/> indicates the location of an inline graphic, illustration, or figure.
<binaryObject> provides encoded binary data representing an inline graphic or other object.

Graphic components may be encoded in a number of different ways:

+ in some non-XML or binary format such as PNG, JPEG, etc.
« inan XML format such as SVG

105

3. Elements Available in All TEI Documents

« ina TEI XML format such as the notation for graphs and trees described in 19. Graphs, Networks, and Trees

In the last two cases, the presence of the graphic will be indicated by an appropriate XML element, drawn from
the SVG namespace in the second case, and its content will fully define the graphic to be produced. In the first
case, the element <graphic> is used to mark the presence of the graphic only and the visual content is stored
outside the XML document, and its location is referenced by means of an url attribute. Alternatively, if the
graphical information is embedded directly within the document using some suitable binary format such as
Base64, the <binaryObject> element may be used to contain it.

The elements <graphic> and <binaryObject> are made available as members of the class model.graphicLike
when this module is included in a schema. These elements are also both members of the class
att.internetMedia, from which they inherit the following attribute:

att.internetMedia provides attributes for specifying the type of a computer resource using a standard
taxonomy.
@mimeType (MIME media type) specifies the applicable multimedia internet mail extension
(MIME) media type

For example, the following passage indicates that a copy of the image found in the source text may be
recovered from the URL zigzag2.png and that this image is in PNG format:

<p>These were the four lines I moved in
through my first, second, third, and
fourth volumes. -- In the fifth volume

I have been very good, -- the precise
line I have described in it being this :
<graphic url="zigzag2.png" mimeType="image/png"/>
By which it appears, that except at the
curve, marked A. where I took a trip

to Navarre, -- and the indented curve B.
which is the short airing when I was
there with the Lady Baussiere and her
page, -- I have not taken the least frisk
</ p>

Source: [1198]]

The <graphic> and <binaryObject> elements are phrase level elements which may be used anywhere that
textual content is permitted, within but not between paragraphs or headings. In the following example, the
encoder has decided to treat a specific printer's ornament as a heading:

<head>
<graphic
url="http://www.iath.virginia.edu/gants/0Ornaments/Heads/hp-ral@2.gif"/>
</head>

The <figure> element discussed in 14.3. Specific Elements for Graphic Images provides additional capabilities,
for example the ability to combine a number of images into a hierarchically organized structure or a block of
images. It also provides the ability to associate an image with additional information such as a heading or a
description.

3.10 Reference Systems

By reference system we mean the system by which names or references are associated with particular passages
of a text (e.g. Ps. 23:3 for the third verse of Psalm 23 or Amores 2.10.7 for Ovid's Amores, book 2, poem

106

3.10. Reference Systems

10, line 7). Such names make it possible to mark a place within a text and enable other readers to find it
again. A reference system may be based on structural units (chapters, paragraphs, sentences; stanza and verse),
typographic units (page and line numbers), or divisions created specifically for reference purposes (chapter and
verse in Biblical texts). Where one exists, the traditional reference system for a text should be preserved in an
electronic transcript of it, if only to make it easier to compare electronic and non-electronic versions of the
text.

Reference systems may be recorded in TEI-encoded texts in any of the following ways:

» where a reference system exists, and is based on the same logical structure as that of the text's markup, the
reference for a passage may be recorded as the value of the global xml:id or n attribute on an appropriate
tag, or may be constructed by combining attribute values from several levels of tags, as described below in
section 3.10.1. Using the xml:id and n Attributes.

o where there is no pre-existing reference system, the global xml:id or n attributes may be used to construct
one (e.g. collections and corpora created in electronic form), as described below in section 3.10.2. Creating
New Reference Systems.

» where a reference system exists which is not based on the same logical structure as that of the text's markup
(for example, one based on the page and line numbers of particular editions of the text rather than on the
structural divisions of it), any of a variety of methods for encoding the logical structure representing the
reference system may be employed, as described in chapter 20. Non-hierarchical Structures.

« where a reference system exists which does not correspond to any particular logical structure, or where the
logical structure concerned is of no interest to the encoder except as a means of supporting the referencing
system, then references may be encoded by means of <milestone> elements, which simply mark points in the
text at which values in the reference system change, as described below in section 3.10.3. Milestone Elements.

The specific method used to record traditional or new reference systems for a text should be declared in the
TEI header, as further described in section 3.10.4. Declaring Reference Systems and in section 16.2.5. Canonical
References.

When a text has no pre-existing associated reference system of any kind, these Guidelines recommend as a
minimum that at least the page boundaries of the source text be marked using one of the methods outlined
in this section. Retaining page breaks in the markup is also recommended for texts which have a detailed
reference system of their own. Line breaks in prose texts may be, but need not be, tagged.>

3.10.1 Using the xml:id and n Attributes

When traditional reference schemes represent a hierarchical structuring of the text which mirrors that of the
marked-up document, the n attribute defined for all elements may be used to indicate the traditional identifier
of the relevant structural units. The n attribute may also be used to record the numbering of sections or list items
in the copy text if the copy-text numbering is important for some reason, for example because the numbers are
out of sequence.

For example, a traditional reference to Ovid's Amores might be Amores 2.10.7—book 2, poem 10, line 7.
Book, poem, and line are structural units of the work and will therefore be tagged in any case. (See chapter 6.
Verse for a discussion of structural units in verse collections.) In such cases, it is convenient to record traditional
reference numbers of the structural units using the n attribute. The relevant tags for our example would be:

<divl n="Amores" type="volume">
<div2 n="1" type="book">
<l-- ,,. -->

>Many encoders find it convenient to retain the line breaks of the original during data entry, to simplify proofreading, but this may be done without
inserting a tag for each line break of the original.

107

3. Elements Available in All TEI Documents

</div2>
<div2 n="2" type="book">
<div3 n="1" type="poem">

<l-- ... -->

</div3>

<div3 n="2" type="poem">
<l-- ... -->

</div3>
<l-- ... -->

<div3 n="10" type="poem">

<L n="1"> ... </1>
<t n="2"> ... </1>

<l-- ... -->
<L n="7"> ... </1>

</div3>
<l-- ... -->
</div2>
<l-- ... -->
</divl>

One may also place the entire standard reference for each portion of the text into the appropriate value for
the n attribute, though for obvious reasons this takes more space in the file:

<divl n="Amores" type="volume">
<div2 n="Amores 1" type="book">
<l-- ... -->
</div2>
<div2 n="Amores 2" type="book">
<div3 n="Amores 2.1" type="poem">

<l-- ... -->

</div3>
<l-- ... -->

<div3 n="Amores 2.10" type="poem">
<l-- ... -->

<l n="Amores 2.10.7"> ... </1>

<l-- ... -->

</div3>
<l-- ... -->

</div2>

<l-- ... -->
</divl>

If the names used by the traditional reference system can be formulated as identifiers, then the references
can be given as values for the xml:id attribute; this requires that the reference be given without internal spaces,
begin with a letter or underscore, and contain no characters other than letters, digits, hyphens, underscores, full
stops, and the various combining and extender characters, as defined by the XML specification. Unlike values
for the n attribute, values for the xml:id attribute must be unique throughout the document. Our example then
looks like this:

<divl n="Amores" type="volume">
<div2 xml:id="am.1l" type="book">
<l-- ,,. -->

</div2>

108

3.10. Reference Systems

<div2 xml:id="am.2" type="book">
<div3 xml:id="am.2.1" type="poem">

<l-- ... -->
</div3>
<l-- ... -->
<div3 xml:id="am.2.10" type="poem">
<l-- ... -->
<l xml:id="am.2.10.7"> ... </1>
<l-- ... -->
</div3>
<l-- ... -->
</div2>
<l-- ... -->
</divl>

To document the usage and to allow automatic processing of these standard references, it is recommended
that the TEI header be used to declare whether standard references are recorded in the n or xml:id attributes
and which elements may carry standard references or portions of them. For examples of declarations for the
reference systems just shown, see section 3.10.4. Declaring Reference Systems.

Using the n attribute one can specify only a single standard referencing system, a limitation not without
problems, since some editions may define structural units differently and thus create alternative reference
systems. For example, another edition of the Amores considers poem 10 a continuation of poem 9, and therefore
would specify the same line as Amores 2.9.31. In order to record both of these reference systems one could
employ any of a variety of methods discussed in chapter 20. Non-hierarchical Structures.

3.10.2 Creating New Reference Systems

If a text has no canonical reference system of its own, a reference system, if needed, may be derived from the
structure of the electronic text, specifically from the markup of the text. As with any reference system intended
for long-term use, it is important to see the reference as an established, unchanging point in the text. Should
the text be revised or rearranged, the reference-system identifiers associated with any bit of text must stay with
that bit of text, even if it means the reference numbers fall out of sequence. (A new reference system may always
be created beside the old one if out-of-sequence numbers must be avoided.)

The global attributes n and xml:id may be used to assign reference identifiers to segments of the text.
Identifiers specified by either attribute apply to the entire element for which they are given. ID attributes must
be unique within a single document, and ID values must begin with a letter. No such restrictions are made on
the values of n attributes.

A convenient method of mechanically generating unique values for xml:id or n attributes based on the
structure of the document is to construct, for each element, a domain-style address comprising a series of
components separated by full stops, with one component for each level of the document hierarchy. Two
methods may be used. In the typed path form of identifier, each component in the identifier takes the form
of an element identifier, a hyphen, and a number, for example p-2. The element name specifies what type of
element is to be sought, and the number specifies which occurrence of that element type is to be selected. (The
hyphen and number may be omitted if there is only one element of the given type.) In the untyped path form
of identifier, each component consists of a number, indicating which element in the sequence of nodes at each
level is to be selected.

Identifiers generated with these methods should use the <text> element as their starting point, rather than
the <TEI> or <body> elements. The <TEI> element may be taken as a starting point only if identifiers need
to be generated for the <teiHeader>, which is not usually the case; using the <body> element as a root would
prevent assignment of identifiers for the front and back matter. The component corresponding to the root

109

3. Elements Available in All TEI Documents

element can be omitted from identifiers, if no confusion will result. In collections and corpora, the component
corresponding to the root may be replaced by the unique identifier assigned to the text or sample.

In the following example, each element within the <text> element has been given a typed-path identifier as
its xml:id value, and an untyped-path identifier as its n value; the latter are prefixed with the string AB, which
may be imagined to be the general identifier for this text.

<text xml:id="Text-1" n="AB">
<front xml:id="Front" n="AB.1">
<div xml:id="Front.div-1" n="AB.1.1">

<p> ... </p>
</div>
<titlePage xml:id="Front.titlePage" n="AB.1.2">
<titlePart> ... </titlePart>
</titlePage>
<div xml:id="Front.div-2" n="AB.1.3">
<p> ... </p>
</div>
</front>
<body xml:id="Body" n="AB.2">
<p xml:id="Body.p-1" n="AB.2.1"> ... </p>
<p xml:id="Body.p-2" n="AB.2.2"> ... </p>
<div xml:id="Body.div-1" n="AB.2.3">
<head xml:id="Body.div-1.head" n="AB.2.3.1"> ... </head>
<p xml:id="Body.div-1.p-1" n="AB.2.3.2"> ... </p>
<p xml:id="Body.div-1.p-2" n="AB.2.3.3"> ... </p>
</div>
<div xml:id="Body.div-2" n="AB.2.4">
<head xml:id="Body.div-2.head" n="AB.2.4.1"> ... </head>
<p xml:id="Body.div-2.p-1" n="AB.2.4.2"> ... </p>
<p xml:id="Body.div-2.p-2" n="AB.2.4.3"> ... </p>
</div>
</body>
</text>

The typed and untyped path methods are convenient, but are in no way required for anyone creating a reference
system.

If the xml:id attribute is used to record the reference identifiers generated, each value should record the entire
path. If the n attribute is used, each value may record either the entire path or only the subpath from the parent
element. The attribute used, the elements which can bear standard reference identifiers, and the method for
constructing standard reference identifiers, should all be declared in the header as described in section 2.3.5.
The Reference System Declaration.

3.10.3 Milestone Elements

Where the desired reference system does not correspond to any particular structural hierarchy, or the
document combines multiple structural hierarchies (as further discussed in 20. Non-hierarchical Structures),
simpler though less expressive methods may be necessary. In such cases the simplest solution may be just to
mark up changes in the reference system where they occur, by using one or more of the following milestone
elements:
<milestone/> marks a boundary point separating any kind of section of a text, typically but not necessarily
indicating a point at which some part of a standard reference system changes, where the change is
not represented by a structural element.

<pb/> (page break) marks the boundary between one page of a text and the next in a standard reference
system.

110

3.10. Reference Systems

<lb/> (line break) marks the start of a new (typographic) line in some edition or version of a text.

<cb/> (column break) marks the boundary between one column of a text and the next in a standard
reference system.

These elements simply mark the points in a text at which some category in a reference system changes. They
have no content but subdivide the text into regions, rather in the same way as milestones mark points along
a road, thus implicitly dividing it into segments. The elements <pb>, <cb>, and <lb> are specialised types of
milestone, marking page, column, and line boundaries. The global n attribute is used in each case to provide a
value for the particular unit associated with this milestone (for example, the page or line number). Since it is
not structural, validation of a reference system based on <milestone>s cannot readily be checked by an XML
parser, so it will be the responsibility of the encoder or the application software to ensure that they are given in
the correct order.

Milestone elements are often used as a simple means of capturing the original appearance of an early printed
text, which will rarely coincide exactly with structural units, but they are generally useful wherever a text has
two or more competing structures. For example, many English novels were first published as serial works,
individual parts of which do not always contain a whole number of chapters. An encoder might decide to
represent the chapter-based structure using <divl> elements, with <milestone> elements to mark the points at
which individual parts end; or the reverse. Thus, an encoding in which chapters are regarded as more important
than parts might encode some work in which chapter three begins in part one and is concluded in part two as
follows:

<text>
<body>
<milestone unit="part" n="1"/>
<divl n="1" type="chapter">
<p>
<l-- ... -->
</p>
</divl>
<divl n="2" type="chapter">
<p>
<l-- ... -->
</p>
</divl>
<divl n="3" type="chapter">
<p>
<l-- ... -->
</p>
<milestone unit="part" n="2"/>
<p>
<l-- ... -->
</p>
</divl>
</body>
</text>

An encoding of the same work in which parts are regarded as more important than chapters might begin as
follows:

<text>
<body>
<divl n="1" type="part">
<milestone unit="chapter" n="1"/>

111

3. Elements Available in All TEI Documents

<p>
<l-- ... -->
</p>
<milestone unit="chapter" n="2"/>
<p>
<l-- ... -->
</p>
<milestone unit="chapter" n="3"/>
<p>
<l-- ... -->
</p>
</divl>
<divl n="2" type="part">
<p>
<l-- ... -->
</p>
<milestone unit="chapter" n="4"/>
<p>
<l-- ... -->
</p>
</divl>
</body>
</text>

Similarly, when tagging dramatic verse one may wish to privilege stanzas and lines over speeches and
speakers, particularly where speeches cross line and line group boundaries. One might also wish to mark
changes in narrative voice in a prose text. In either case, a milestone tag may be used to indicate change of
speaker:

<lg>
<milestone unit="speaker" n="Man"/>
<1>0h what is this I cannot see</1>
<l>With icy hands gets a hold on me</1>
<milestone unit="speaker" n="Death"/>
<1>0h I am Death, none can excel</1>
<1>I open the doors of heaven and hell</1>
</1lg>

Source: [136]]

Milestone tags also make it possible to record the reference systems used in a number of different editions of
the same work. The reference system of any one edition can be recreated from a text in which all are marked
by simply ignoring all elements that do not specify that edition on their ed attribute.

As a simple example, assuming that edition E1 of some collection of poems regards the first two poems
as constituting the first book, while edition E2 regards the first poem as prefatory, a markup scheme like the
following might be adopted:

<milestone ed="E1" unit="work"/>
<milestone ed="E2" unit="work"/>
<milestone ed="E1" unit="book"/>
<milestone ed="E1" unit="poem"/>
<milestone ed="E2" unit="poem"/>
<milestone ed="E2" unit="book"/>

112

3.10. Reference Systems

<milestone ed="E1" unit="poem"/>
<milestone ed="E2" unit="poem"/>

In this case no n value is specified, since the numbers rise predictably and the application can keep a count
from the start of the document, if desired.

The value of the n attribute may but need not include the identifiers used for any larger sections. That is,
either of the following styles is legitimate:

<milestone ed="E1" unit="work" n="Amores"/>
<milestone ed="E1" unit="book" n="1"/>
<milestone ed="E1" unit="poem" n="1"/>
<milestone ed="E1" unit="poem" n="2"/>
<milestone ed="E1" unit="book" n="2"/>

or

<milestone ed="E1" unit="work" n="Amores"/>
<milestone ed="E1" unit="book" n="1"/>
<milestone ed="E1" unit="poem" n="1.1"/>
<milestone ed="E1" unit="poem" n="1.2"/>
<milestone ed="E1" unit="book" n="2"/>

When using <milestone> tags, line numbers may be supplied for every line or only periodically (every fifth,
every tenth line). The latter may be simpler; the former is more reliable.

The style of numbering used in the values of n is unrestricted: for the example above, L.i, Lii, and Liii
could have been used equally well if preferred. The special value unnumbered should be reserved for marking
sections of text which fall outside the normal numbering system (e.g. chapter heads, poem numbers, titles, or
speaker attributions in a verse drama).

By default, there are no constraints on the values supplied for the ed attribute. If it is felt appropriate to
enforce such a restriction, the techniques described in 23.2. Personalization and Customization may be used, for
example to specify that the attribute must specify one of a predefined set of values.

See below, section 3.10.4. Declaring Reference Systems, for examples of declarations for the reference systems
just shown.

Milestone elements may be used to mark any kind of shift in the properties associated with a piece of text,
whether or not would normally be considered a reference system. For example, they may be used to mark
changes in narrative voice in a prose text, or changes of speaker in a dramatic text, where these are not marked
using structural elements such as <sp>, perhaps in order to avoid a clash of hierarchies.

The type attribute may be used on milestone elements such as <lb> and <pb> to categorize them in any way.
One particularly useful way is to indicate whether or not these milestone tags are word-breaking. By default it
is reasonable to assume that words are not broken across page or line boundaries, and that therefore a sequence
such as

...sed imp<lb/>erator dixit...

should be tokenized as four words (sed, imp, erator, and dixit). To make explicit that this is not the case, a
tagging such as the following is recommended:

113

3. Elements Available in All TEI Documents

...sed imp<lb type="nobreak"/>erator dixit...

Where hyphenation appears before a line or page break, the encoder may or may not choose to include it, either
explicitly using an appropriate Unicode character, or descriptively for example by means of the rend attribute;

see further 3.2. Treatment of Punctuation.

3.10.4 Declaring Reference Systems

Whatever kind of reference system is used in an electronic text, it is recommended that the TEI header
contain a description of its construction in the <refsDecl> element described in section 2.3.5. The Reference
System Declaration. As described there, the declaration may consist either of a formal declaration using the
<cRefPattern> element or an informal description in prose. The former is recommended because unlike prose

it can be processed by software.

The three examples given in section 3.10.1. Using the xml:id and n Attributes would be declared as follows.
The first example encodes the standard references for Ovid's Amores one level at a time, using the n attribute
on the <divl>, <div2>, <div3>, and <I> tags. The header for such an encoding should look something like this:

<teiHeader>
<fileDesc>
<l-- ... -->
</fileDesc>
<encodingDesc>
<refsDecl>
<cRefPattern
matchPattern="(["~ 1+) ([0-9]+)\.([0-9]+)\.([0-9]+)"

replacementPattern="#xpath(//divl[@n="$1"']/div2[@n="$2"]/div3[@n="$3"']1/1[@n="$4"]">

<p>A canonical reference is assembled with
<list>
<item>the name of the <label>work</label>: the
<att>n</att> of a <gi>divl</gi>,</item>
<item>a space,</item>
<item>the number of the <label>book</label>: the
<att>n</att> of a child <gi>div2</gi>,</item>
<item>a full stop</item>
<item>the number of the <label>poem</label>: the
<att>n</att> of a child <gi>div3</gi>,</item>
<item>the line number: the <att>n</att> value of a
child <gi>l</gi>
</item>
</list>
</p>
</cRefPattern>
<cRefPattern
matchPattern="(["~ 1+) ([0-9]1+)\.([0-9]+)"

replacementPattern="#xpath(//divl[@n="'$1"']/div2[@n="'$2"']1/div3[@n="$3"']">

<p>Same as above, but without the last component (full

stop followed by the <gi>l</gi>'s <att>n</att>.</p>

</cRefPattern>
<cRefPattern
matchPattern="(["]+) ([0-9]+)"

replacementPattern="#xpath(//divli[@n="$1"']/div2[@n="4$2"']">

<p>Same as above, but without the poem component (full

stop followed by the <gi>div3</gi>'s <att>n</att>.</p>

114

3.10. Reference Systems

</cRefPattern>
</refsDecl>
</encodingDesc>
</teiHeader>

The second example encodes the same reference system, again using the n attribute on the <divl>, <div2>,
<div3>, and <I> tags, but giving the reference string in full on each tag. If canonical references are made only
to lines, the reference system could be declared as follows:

<refsDecl>
<cRefPattern
matchPattern="(["]+ [0-9]+\.[0-9]+\.[0-9]+)"
replacementPattern="#xpath(//1[@n="'$1")"/>
</refsDecl>

Since the entire regular expression is enclosed as a parenthetical subgroup, the entire canonical reference string
is sought as the value of the n attribute on an <I> element.

In order to handle references to poems as well as to individual lines, the declaration for the reference system
must be more complicated:

<refsDecl>
<cRefPattern
matchPattern=" ([~]+ [0-9]+\.[0-9]+\.[0-9]+)"
replacementPattern="#xpath(//1[@n="$1")"/>
<cRefPattern
matchPattern="(["~]+ [0-9]+\.[0-9]+)"
replacementPattern="#xpath(//div2[@n="$1"')"/>
</refsDecl>

This declaration indicates that the entire reference string must be sought as the value of the n attribute on a
<divl>, <div2>, <div3>, or <I> element.

The third example encodes the same reference system, this time giving the entire reference string as the value
of the xml:id attribute on the relevant tags. The reference system declaration for such an encoding could be:

<refsDecl>
<cRefPattern matchPattern="(.*)" replacementPattern="#$1"/>
</refsDecl>

although in general there seems to be little advantage in this case: it is no more difficult to use a standard
relative URI reference as the value of target.

Reference systems recorded by means of milestone tags can also be declared; the following prose description
could be used to declare the example given in section 3.10.3. Milestone Elements.

<refsDecl>
<p>Standard references to work, book, poem, and line may be
constructed from the milestone tags in the text.</p>
</refsDecl>

Or in this way, using a formal declaration for this reference scheme derived from edition E1.

115

3. Elements Available in All TEI Documents

<refsDecl>

<refState ed="E1" unit="work" delim=" "/>
<refState ed="E1" unit="book" delim="."/>
<refState ed="E1" unit="poem" delim=":"/>
<refState ed="E1" unit="line"/>
</refsDecl>

3.11 Bibliographic Citations and References

Bibliographic references (that is, full descriptions of bibliographic items such as books, articles, films, broad-
casts, songs, etc.) or pointers to them may appear at various places in a TEI text. They are required at several
points within the TEI Header's source description, as discussed in section 2.2.7. The Source Description; they
may also appear within the body of a text, either singly (for example within a footnote), or collected together
in a list as a distinct part of a text; detailed bibliographic descriptions of manuscript or other source materials
may also be required. These Guidelines propose a number of specialised elements to encode such descriptions,
which together constitute the model.biblLike class. By default, this class has the following members:

<bibl> (bibliographic citation) contains a loosely-structured bibliographic citation of which the
sub-components may or may not be explicitly tagged.

<biblStruct> (structured bibliographic citation) contains a structured bibliographic citation, in which only
bibliographic sub-elements appear and in a specified order.

<biblFull> (fully-structured bibliographic citation) contains a fully-structured bibliographic citation, in
which all components of the TEI file description are present.

Lists of such elements may also be encoded using the following element:
<listBibl> (citation list) contains a list of bibliographic citations of any kind.

In printed texts, the individual constituents of a bibliographic reference are conventionally marked off from
each other and from the flow of text by such features as bracketing, italics, special punctuation conventions,
underlining, etc. In electronic texts, such distinctions are also important, whether in order to produce
acceptably formatted output or to facilitate intelligent retrieval processing,® quite apart from the need to
distinguish the reference itself as a textual object with particular linguistic properties.

It should be emphasized that for references as for other textual features, the primary or sole consideration
is not how the text should be formatted when it is printed. The distinctions permitted by the scheme outlined
here may not necessarily be all that particular formatters or bibliographic styles require, although they should
prove adequate to the needs of many such commonly used software systems.” The features distinguished and
described below (in section 3.11.2. Components of Bibliographic References) constitute a set which has been useful
for a wide range of bibliographic purposes and in many applications, and which moreover corresponds to a
great extent with existing bibliographic and library cataloguing practice. For a fuller account of that practice
as applied to electronic texts see section 2.2.7. The Source Description; for a brief mention of related library
standards see section 2.7. Note for Library Cataloguers.

3.11.1 Elements of Bibliographic References

The members of the model.biblLike class all share a number of possible component sub-elements. For the <bibl>
and <biblStruct> elements, exactly the same sub-elements are concerned, and they are described together in
section 3.11.2. Components of Bibliographic References; for the <biblFull> element, the sub-elements concerned
are fully described in section 2.2. The File Description.

®For example, to distinguish London as an author's name from London as a place of publication or as a component of a title.

7 Among the bibliographic software systems and subsystems consulted in the design of the <biblStruct> structure were BibTeX, Scribe, and ProCite.
The distinctions made by all three may be preserved in <biblStruct> structures, though the nature of their design prevents a simple one-to-one mapping
from their data elements to TEI elements. For further information, see section 3.11.4. Relationship to Other Bibliographic Schemes.

116

3.11. Bibliographic Citations and References

Different levels of specific tagging may be appropriate in different situations. In some cases, it may be felt
necessary to mark just the extent of the reference itself, with perhaps a few distinctions being made within it
(for example, between the part of the reference which identifies a title or author and the rest). Such references,
containing a mixture of text with specialized bibliographic elements, are regarded as <bibl> elements, and
tagged accordingly. For example:

<p>A book which had a great influence on him
was <bibl>Tufte's <title>Envisioning
Information</title>
</bibl>, although he may
never have actually read it.</p>

Indeed, some encoders may find it unnecessary to mark the bibliographic reference at all:

<p>A book which had a great influence on him
was Tufte's <title>Envisioning Information</title>,
although he may never have actually read it.</p>

Some bibliographic references are extremely elliptical, often only a string of the form Baxter, 1983. If no
further details of Baxter's book are given in the source text and none are supplied by the encoder, then the
reference thus given should be tagged as a <bibl>:

All of this is of course much more fully treated
in <bibl>Baxter, 1983</bibl>.

In general, however, normal modern bibliographic practice, and these Guidelines, distinguish between a
bibliographic reference, which is a self-sufficient description of a bibliographic item, and a bibliographic pointer,
which is a short-form citation (e.g. Baxter, 1983) which serves usually as a place-holder or pointer to a full long-
form reference found elsewhere in the text. The usual encoding of short-form references such as Baxter, 1983 is
not as <bibl> elements but as cross-references to such elements; see section 3.11.3. Bibliographic Pointers below.
In cases where the encoder wishes to impose more structure on the bibliographic information, for example
to make sure it conforms to a particular stylesheet or retrieval processor, the <biblStruct> element should be
used. Note that several of the features in this and later examples are explained later in the current section.

<biblStruct>
<monogr>
<author>Edward R. Tufte</author>
<title>Envisioning Information</title>
<imprint>
<pubPlace>Cheshire, Conn.</pubPlace>
<publisher>Graphics Press</publisher>
<date>1990</date>
</imprint>
</monogr>
</bibl1Struct>

Source: [|210]]

A more complex and detailed bibliographic structure is provided by the <biblFull> element defined in the
TEI header module. This element is provided as a means of embedding the file description of one existing
digital text within that of another (see further section 2.2. The File Description)); however, its use is not confined
to digital texts, and it may be used in the same way as any other bibliographic element, as in this example:

117

3. Elements Available in All TEI Documents

<biblFull>
<titleStmt>
<title>Envisioning Information</title>
<author>Tufte, Edward R[olf]</author>
</titleStmt>
<extent>126 pp.</extent>
<publicationStmt>
<publisher>Graphics Press</publisher>
<pubPlace>Cheshire, Conn. USA</pubPlace>
<date>1990</date>
</publicationStmt>
</bib1lFull>

Source: [|210]]

A list of bibliographic items, of whatever kind, may be treated in the same way as any other list (see section
3.7. Lists). Alternatively, the specialized <listBibl> element may be used. The difference between the two is that
a <list> contains <item> elements, within which bibliographic elements (<bibl>, <biblStruct>, or <biblFull>)
may appear, as well as other phrase- and paragraph-level elements, whereas the <listBibl> may contain only
bibliographic elements, optionally preceded by a heading and a series of introductory paragraphs. The former
would be appropriate for a list of bibliographic elements in which descriptive prose predominated, and the
latter for a more formal bibliography. The following are thus both legal encodings of a list of bibliographic
entries: a <listBibl>:

<listBibl>
<head>Bibliography</head>
<bib1Struct xml:id="NELSON80">
<analytic>
<author>Nelson, T. H.</author>
<title>Replacing the printed word:
a complete literary system.</title>
</analytic>
<monogr>
<title>Information Processing '80: Proceedings of the IFIPS
Congress, October 1980</title>
<editor>Simon H. Lavington</editor>
<imprint>
<publisher>North-Holland</publisher>
<pubPlace>Amsterdam</pubPlace>
<date>1980</date>
</imprint>
<biblScope>pp 1013-23 </biblScope>
</monogr>
<note>Apparently a draft of section 4 of
<title>Literary Machines</title>.</note>
</biblStruct>
<bibl xml:id="NELSON88">Ted Nelson: <title>Literary Machines</title>
(privately published, 1987)</bibl>
<bibl xml:id="BAXTER88">
<author>Baxter, Glen</author>
<title>Glen Baxter His Life: the years of struggle</title>
London: Thames and Hudson, 1988.
</bibl>
</1listBibl>

or a simple <list>:

118

3.11. Bibliographic Citations and References

<list>
<head>Bibliography</head>
<item>
<bibl xml:id="NEL80">
<author>Nelson, T. H.</author>
<title level="a">Replacing the printed word:
a complete literary system.</title>
<title level="m">Information Processing '80:
Proceedings of the IFIPS Congress, October 1980</title>
<editor>Simon H. Lavington</editor>
<publisher>North-Holland</publisher>
<pubPlace>Amsterdam</pubPlace>
<date>1980</date>
<biblScope>pp 1013-23
</bib1Scope>
<note>Apparently a draft of section 4 of
<title>Literary Machines</title>.</note>
</bibl>
</item>
<item>
<bibl xml:id="NEL88">Ted Nelson: <title>Literary Machines</title>
(privately published, 1987)</bibl>
</item>
<item>
<bibl xml:id="BAX88">
<author>Baxter, Glen</author>
<title>Glen Baxter His Life: the years of struggle</title>
London: Thames and Hudson, 1988.
</bibl>
</item>
</list>

3.11.2 Components of Bibliographic References
This section discusses a number of very commonly occurring component elements of bibliographic references.
They fall into four groups:
« elements for grouping components of the analytic, monographic, and series levels in a structured bibliographic
reference

« titles of various kinds, and statements of intellectual responsibility (authorship, etc.)

« information relating to the publication, pagination, etc. of an item (most of these constitute the default
members of the model.biblPart class)
« annotation, commentary, and further detail
The following sections describe the elements which may be used to represent such information within a
<bibl> or <biblStruct> element. Within the former, elements from the model.biblPart class, other phrase-level
elements, and plain text may be combined without other constraint; within the latter, such of these elements
as exist for a given reference must be distinguished, and must also be presented in a specific order, discussed
further below (section |3.11.2.7. Order of Components within References).

3.11.2.1 Analytic, Monographic, and Series Levels

In common library practice a clear distinction is made between an individual item within a larger collection
and a free-standing book, journal, or collection. Similarly a book in a series is distinguished sharply from the

119

3. Elements Available in All TEI Documents

series within which it appears. An article forming part of a collection which itself appears in a series thus has
a bibliographic description with three quite distinct levels of information:

1. the analytic level, giving the title, author, etc., of the article;
2. the monographic level, giving the title, editor, etc., of the collection;

3. the series level, giving the title of the series, possibly the names of its editors, etc., and the number of the
volume within that series.

In the same way, an article in a journal requires at least two levels of information: the analytic level describing
the article itself, and the monographic level describing the journal.

These three levels may be distinguished within a <bibl> element, and must be distinguished within a
<biblStruct> element if present, by means of the following elements:

<analytic> (analytic level) contains bibliographic elements describing an item (e.g. an article or poem)
published within a monograph or journal and not as an independent publication.

<monogr> (monographic level) contains bibliographic elements describing an item (e.g. a book or
journal) published as an independent item (i.e. as a separate physical object).

<series> (series information) contains information about the series in which a book or other bibliographic
item has appeared.

For purposes of TEI encoding, journals and anthologies are both treated as monographs; a journal title will

"men

thus be tagged as a <title level="j"> element, or simply as a <title> within a <monogr> element. Individual
articles in the journal or collected texts should be treated at the ‘analytic’ level. When an article has been printed
in more than one journal or collection, the bibliographic reference may have more than one <monogr> element,
each possibly followed by one or more <series> elements. A <series> element always relates to the most recently
preceding <monogr> element. (Whether reprints of an article are treated in the same bibliographic reference
or a separate one varies among different styles. Library lists typically use a different entry for each publication,
while academic footnoting practice typically treats all publications of the same article in a single entry.)

For example, the article cited in this example has been published twice, once in a journal and once in a
collection which appeared in a German language series:

<biblStruct>
<analytic>
<author>Thaller, Manfred</author>
<title level="a">A Draft Proposal for a Standard for the
Coding of Machine Readable Sources</title>
</analytic>
<monogr>
<title level="j">Historical Social Research</title>
<imprint>
<biblScope type="vol">40</biblScope>
<date>0ctober 1986</date>
<biblScope type="pages">3-46</biblScope>
</imprint>
</monogr>
<monogr>
<title level="m">Modelling Historical Data:
Towards a Standard for Encoding and
Exchanging Machine-Readable Texts</title>
<editor>Daniel I. Greenstein</editor>
<imprint>
<pubPlace>St. Katharinen</pubPlace>

120

3.11. Bibliographic Citations and References

<publisher>Max-Planck-Institut fiir Geschichte
In Kommission bei
Scripta Mercaturae Verlag</publisher>
<date>1991</date>
</imprint>
</monogr>
<series xml:lang="de">
<title level="s">Halbgraue Reihe
zur Historischen Fachinformatik</title>
<respStmt>
<resp>Herausgegeben von</resp>
<name type="person">Manfred Thaller</name>
<name type="org">Max-Planck-Institut fir Geschichte</name>
</respStmt>
<title level="s">Serie A: Historische Quellenkunden</title>
<biblScope>Band 11</biblScope>
</series>
</bib1Struct>

The practice of analytic vs. monographic citation, as described here, should be distinguished from the
practice of including within one citation a reference to another work, which the encoder considers to be related
to in some way: see further 3.11.2.5. Related items below.

Punctuation should not appear between the elements within a structured bibliographic entry, unless it is
contained within the elements it delimits. As the example shows, it is possible to encode the entry without
any inter-element punctuation: this facilitates use of the <biblStruct> element in systems which can render
bibliographic references in any of several styles.

3.11.2.2 Authors, Titles, and Editors

Bibliographic references typically begin with a statement of the title being cited followed by the names of those
intellectually responsible for it. For articles in journals or collections, such statements should appear both for
the analytic and for the monographic level. The following elements are provided for tagging such elements:
<title> contains a title for any kind of work.
<author> in a bibliographic reference, contains the name(s) of the author(s), personal or corporate, of a
work; for example in the same form as that provided by a recognized bibliographic name authority.
<editor> secondary statement of responsibility for a bibliographic item, for example the name of an
individual, institution or organization, (or of several such) acting as editor, compiler, translator, etc.
<respStmt> (statement of responsibility) supplies a statement of responsibility for the intellectual content
of a text, edition, recording, or series, where the specialized elements for authors, editors, etc. do not
suffice or do not apply.
<resp> (responsibility) contains a phrase describing the nature of a person's intellectual responsibility.
<name> (name, proper noun) contains a proper noun or noun phrase.
<meeting> contains the formalized descriptive title for a meeting or conference, for use in a bibliographic
description for an item derived from such a meeting, or as a heading or preamble to publications
emanating from it.
The elements <author>, <editor>, and <respStmt> are the default members of the model.respLike class, a
subclass of the model.biblPart class to which the constituents of the <bibl> element belong.
In bibliographic references, all titles should be tagged as such, whether analytic, monographic, or series titles.
The single element <title> is used for all these cases. When it appears directly within an <analytic>, <monogr>,
or <series> element, <title> is interpreted as belonging to the appropriate level. When it appears elsewhere,

121

3. Elements Available in All TEI Documents

its level attribute should be used to signal its bibliographic level. It is a semantic error to give a value for the
level attribute which is inconsistent with the context; such values may be ignored. The level value a implies
the analytic level; the values m, j, and u imply the monographic level; the value s implies the series level.
Note, however, that the semantic error occurs only if the nested title is directly enclosed by the <analytic>,
<monogr>, or <series> element; if it is enclosed only indirectly (i.e., nested more deeply), no semantic error
need be present. For example, the analytic title may contain a monographic title:

<biblStruct>
<analytic>
<author>Lucy Allen Paton</author>
<title>Notes on Manuscripts of the
<title level="m" xml:lang="fr">Prophécies de Merlin</title>
</title>
</analytic>
<monogr>
<title level="j">PMLA</title>
<imprint>
<biblScope type="vol">8</biblScope>
<date>1913</date>
<biblScope type="pages">122</biblScope>
</imprint>
</monogr>
</biblStruct>

In this case, the analytic title ‘Notes on Manuscripts of the Prophécies de Merlin’ needs no level attribute because
itis directly contained by the <analytic> level; the monographic title contained within it, ‘Prophécies de Merlin,
does not create a semantic error because it is not directly contained by the <analytic> element.

In some bibliographic applications, it may prove useful to distinguish main titles from subordinate titles,
parallel titles, etc. The type attribute is provided to allow this distinction to be recorded.

The following reference, from a national standard for bibliographic references, illustrates this type of analysis
with its distinction between main and subordinate titles. Note that this uses the more flexible <bibl>, rather
than the structured <biblStruct> element: consequently, there is no requirement to tag all the components of
the reference (notably the authors).

<bibl>Saarikoski, Pirkko-Liisa, and Paavo Suomalainen,
<title level="a" type="main">Studies on the physiology of
the hibernating hedgehog, 15</title>
<title level="a" type="subordinate">Effects of seasonal
and temperature changes on the in vitro glycerol release from
brown adipose tissue</title>
<title 1level="j">Ann. Acad. Sci. Fenn., Ser. Ad</title>
<date>1972</date>
<biblScope type="vol">187</bibl1Scope>
<biblScope type="pp">1-4</biblScope>
</bibl>

Source: [5]]

Slightly more complex is the distinction made below among main, subordinate, and parallel titles, in an
example from the same source (p. 63). The punctuation and the bibliographic analysis are those given in ANSI
739.29-1977; the punctuation is in the style prescribed by the International Standard Bibliographic Description

122

3.11. Bibliographic Citations and References

(ISBD).® Again, it is only because this example uses <bibl> rather than <biblStruct>, that specific punctuation
may be included between the component elements of the reference.

<bibl>Tchaikovsky, Peter Ilich.

<title level="m" type="main">The swan lake ballet</title>

= <title level="m" type="parallel" xml:lang="fr">Le lac des cygnes</title>
<title level="m" type="subordinate" xml:lang="fr">grand ballet en 4 actes</title>
<title 1level="m" type="subordinate">op. 20</title>

[Score].

New York: Broude Brothers; [1951] (B.B. 59). vi, 685 p.</bibl>

Source: [/5]]

The elements <author> and <editor> have, for printed books and articles, a fairly obvious significance; for
other kinds of bibliographic items their proper usage may be less obvious. The <author> element should be used
for the person or agency with primary responsibility for a work's intellectual content, and the element <editor>
for an editor of the work. Thus an organization such as a radio or television station is usually accounted ‘author’
of a broadcast, for example, while the author of a Government report will usually be the agency which produced
it.

For anyone else with responsibility for the work, the <respStmt> element should be used. The nature of the
responsibility is indicated by means of a <resp> element, and the person, organization, etc. responsible by a
<name>, <persName>, or <orgName> element. Strings such as ‘unknown’ may be encoded using the <rs>
element.

At least one of the four naming elements (<name>, <persName>, <orgName>, or <rs>) and one <resp>
element should be given within the <respStmt> element, followed optionally by any number of any of them.

Examples of secondary responsibility of this kind include the roles of illustrator, translator, encoder, and
annotator. The <respStmt> element may also be used for editors, if it is desired to record the specific terms in
which their role is described.

Examples of <author> and <editor> may be found in sections|3.11.1. Elements of Bibliographic References, and
3.11.2.1. Analytic, Monographic, and Series Levels; wherever <author> and <editor> may occur, the <respStmt>
element may also occur. When one of these elements precedes or immediately follows a title, it applies to that
title; when it follows an <edition> element or occurs within an edition statement, it applies to the edition in
question.

In this example, the <respStmt> elements apply to the work as a whole, not merely to the first edition:

<bibl>
<author>Lominadze, D. G.</author>
<title level="m">Cyclotron waves in plasma.</title>
<respStmt>
<resp>translated by</resp>
<name>A. N. Dellis;</name>
</respStmt>
<respStmt>
<resp>edited by</resp>
<name>S. M. Hamberger.</name>
</respStmt>
<edition>1st ed.</edition>
<pubPlace>0xford:</pubPlace>

8The analysis is not wholly unproblematic: as the text of the standard points out, the first subordinate title is subordinate only to the parallel title in
French, while the second is subordinate to both the English main title and the French parallel title, without this relationship being made clear, either in
the markup given in the example or in the reference structure offered by the standard.

123

3. Elements Available in All TEI Documents

<publisher>Pergamon Press,</publisher>
<date>1981.</date>
<extent>206 p.</extent>
<title level="s">International series in natural philosophy.</title>
<note place="inline">Translation of:
<title xml:lang="ru" Tlevel="m">Ciklotronnye volny v plazme.</title>
</note>
</bibl>

Source: [|110]]

In this example, by contrast, the <respStmt> element applies to the edition, and not to the collection per se
(Moser and Tervooren were not responsible for the first thirty-five printings); the elements of the reference have
been reordered from their appearance on the title page of the volume in order to ensure the correct relationship
of the collection title, the edition statement, and the statement of responsibility.

<biblStruct>
<monogr xml:lang="de">

<title>Des Minnesangs Friihling</title>

<note place="inline">Mit 1 Faksimile</note>

<edition>36., neugestaltete und erweiterte Auflage</edition>

<respStmt>
<resp>Unter Benutzung der Ausgaben von <name>Karl

Lachmann</name> und <name>Moriz Haupt</name>, <name>Friedrich
Vogt</name> und <name>Carl von Kraus</name> bearbeitet von</resp>

<name>Hugo Moser</name>
<name>Helmut Tervooren</name>

</respStmt>

<imprint>
<biblScope type="volume">I Texte</biblScope>
<pubPlace>Stuttgart</pubPlace>
<publisher>S. Hirzel Verlag</publisher>
<date>1977</date>

</imprint>

</monogr>
</bib1Struct>

Another form of ‘responsibility’ arises when a work is published as the outcome of a conference, workshop or
similar meeting. The <meeting> element may be used to supply this information, as in the following example:

<biblStruct>
<monogr>
<title>Proceedings of a workshop on corpus resources</title>
<respStmt>
<resp>Programme Organizer</resp>
<name>Geoffrey Leech</name>
</respStmt>
<meeting>DTI Speech and Language Technology Club meeting, 3-4
January 1990, Wadham College, Oxford</meeting>
</monogr>
</biblStruct>

3.11.2.3 Imprint, Pagination, and Other Details

By imprint is meant all the information relating to the publication of a work: the person or organization by
whose authority and in whose name a bibliographic entity such as a book is made public or distributed

124

3.11. Bibliographic Citations and References

(whether a commercial publisher or some other organization), the place of publication, and a date. It may
also include a full address for the publisher or organization. Full bibliographic references usually specify
either the number of pages in a print publication (or equivalent information for non-print materials), or the
specific location of the material being cited within its containing publication. The following elements are
provided to hold this information:

<imprint> groups information relating to the publication or distribution of a bibliographic item.

<address> contains a postal address, for example of a publisher, an organization, or an individual.

<pubPlace> (publication place) contains the name of the place where a bibliographic item was published.

<publisher> provides the name of the organization responsible for the publication or distribution of a
bibliographic item.

<date> contains a date in any format.

<idno> (identifying number) supplies any number or other identifier used to identify a bibliographic item
in a standardized way.

<extent> describes the approximate size of a text as stored on some carrier medium, whether digital or
non-digital, specified in any convenient units.

<biblScope> (scope of citation) defines the scope of a bibliographic reference, for example as a list of page
numbers, or a named subdivision of a larger work.
The elements <biblScope>, <pubPlace> and <publisher> constitute the special class model.imprintPart; mem-
bers of this class may appear with a date inside an <imprint> element in a specific location within a <biblStruct>,
or alternatively, they may appear alongside any other bibliographic component inside a <bibl>.

For bibliographic purposes, usually only the place (or places) of publication are required, possibly including
the name of the country, rather than a full address; the element <pubPlace> is provided for this purpose. Where
however the full postal address is likely to be of importance in identifying or locating the bibliographic item
concerned, it may be supplied and tagged using the <address> element described in section 3.5.2. Addresses.
Alternatively, if desired, the <rs> or <name> elements described in section 3.5.1. Referring Strings may be used;
this involves no claim that the information given is either a full address or the name of a city.

The name of the publisher of an item should be marked using the <publisher> element even if the item is
made public (‘published’) by an organization other than a conventional publisher, as is frequently the case with
technical reports:

<biblStruct>
<monogr>
<author>Nicholas, Charles K.</author>
<author>Welsch, Lawrence A.</author>
<title>0n the interchangeability of SGML and ODA</title>
<imprint>
<pubPlace>Gaithersburg, MD</pubPlace>
<publisher>National Institute of Standards and Technology
</publisher>
<date when="1992-01">January 1992</date>
</imprint>
<extent>19 pp.</extent>
</monogr>
<idno type="NIST">NISTIR 4681</idno>
</biblStruct>

and with dissertations:

125

3. Elements Available in All TEI Documents

<biblStruct>
<monogr>
<author>Hansen, W.</author>
<title level="u">Creation of hierarchic text
with a computer display</title>
<note place="inline">Ph.D. dissertation</note>
<imprint>
<publisher>Dept. of Computer Science, Stanford Univ.</publisher>
<pubPlace>Stanford, CA</pubPlace>
<date when="1971-06">June 1971</date>
</imprint>
</monogr>
</biblStruct>

Source: [173]

When an item has been reprinted, especially reprinted without change from a specific earlier edition, the
reprint may appear in a <monogr> element with only the <imprint> and other details of the reprint. In the
following example, a microform reprint has been issued without any change in the title or authorship. The
series statement here applies only to the second <monogr> element.

<biblStruct>
<monogr>
<author>Shirley, James</author>
<title type="main">The gentlemen of Venice</title>
<title type="subordinate">a tragi-comedie presented at the private
house in Salisbury Court by Her Majesties servants</title>
<note place="inline">[Microform]</note>
<imprint>
<pubPlace>London</pubPlace>
<publisher>H. Moseley</publisher>
<date>1655</date>
</imprint>
<extent>78 p.</extent>
</monogr>
<monogr>
<imprint>
<pubPlace>New York</pubPlace>
<publisher>Readex Microprint</publisher>
<date>1953</date>
</imprint>
<extent>1 microprint card, 23 x 15 cm.</extent>
</monogr>
<series>
<title>Three centuries of drama: English, 1642-1700</title>
</series>
</bib1Struct>

Source: [5]

An alternative way of handling the above situation would be to use the <relatedItem> element described in
section 3.11.2.5. Related items below.

A bibliographic description, particularly for an analytic title, will often include some additional information
specifying its location, for example as a volume number, page number, range of page numbers, or name or
number of a subdivision of the host work. The element <biblScope> may be used to identify such information

126

3.11. Bibliographic Citations and References

if it is present. Where it is desired to distinguish different classes of such information (volume number, page
number, chapter number, etc.), the type attribute may be used with any convenient typology.

When the item being cited is a journal article, the <imprint> element describing the issue in which it appeared
may contain <biblScope> elements for volume and page numbers, together with a <date> element.

For example:

<biblStruct>
<analytic>
<author>Wrigley, E. A.</author>
<title>Parish registers and the historian</title>
</analytic>
<monogr>
<editor>Steel, D. J.</editor>
<title>National index of parish registers</title>
<imprint>
<pubPlace>London</pubPlace>
<publisher>Society of Genealogists</publisher>
<date when="1968">1968</date>
<biblScope type="vol">vol. 1</biblScope>
<biblScope type="pp">pp. 155-167.</biblScope>
</imprint>
</monogr>
</bib1Struct>

The type attribute on <biblScope> is optional: both the following are legal examples:

<biblStruct>
<analytic>
<author>Boguraev, Branimir</author>
<author>Neff, Mary</author>
<title>Text Representation, Dictionary Structure,
and Lexical Knowledge</title>
</analytic>
<monogr>
<title level="j">Literary & Linguistic Computing</title>
<imprint>
<biblScope type="vol">7</biblScope>
<biblScope type="issue">2</bibl1Scope>
<date>1992</date>
<biblScope type="pp">110-112</biblScope>
</imprint>
</monogr>
</bib1Struct>

<biblStruct>
<analytic>
<author>Chesnutt, David</author>
<title>Historical Editions in the States</title>
</analytic>
<monogr>
<title level="j">Computers and the Humanities</title>
<imprint>
<biblScope>25.6</bib1Scope>

127

3. Elements Available in All TEI Documents

<date when="1991-12">(December, 1991):</date>
<bib1Scope>377-380</biblScope>
</imprint>
</monogr>
</biblStruct>

3.11.2.4 Series Information

Series information may (in <bibl> elements) or must (in <biblStruct> elements) be enclosed in a <series>
element or (in a <biblFull> element) a <seriesStmt> element. The title of the series may be tagged <title
level="s">, the volume number <biblScope type="vol">, and responsibility statements for the series (e.g. the
name and affiliation of the editor, as in the example in section 3.11.2.1. Analytic, Monographic, and Series Levels)
may be tagged <editor> or <respStmt>.

3.11.2.5 Related items

In bibliographic parlance, a related item is any bibliographic item which, though related to that being defined, is
distinct from it. The distinction between analytic and monographic items made above may be thought of as a
special case of this kind of ‘related’ item. More usually however, the term is applied to such items as translations,
continuations, original sources, parts, etc.

The element <relatedItem> is provided as a means of documenting such associated items:

<relateditem> contains or references some other bibliographic item which is related to the present one in
some specified manner, for example as a constituent or alternative version of it.

In the following example, the first <biblStruct> describes a facsimile edition, and the second describes the
work of which it is a facsimile. The relation between the facsimile and its source is represented by means of a
<relatedItem> within the first description, which points to the description of the source.

<biblStruct xml:id="bib103">
<monogr>
<author>Swinburne, Algernon Charles</author>
<title>Swinburne's <title>Atalanta in Calydon</title>: A Facsimile of the
First Edition</title>
<editor>Georges Lafourcade</editor>
<imprint>
<pubPlace>London</pubPlace>
<publisher>0xford UP</publisher>
<date>1930</date>
</imprint>
</monogr>
<relatedItem type="original">
<ref target="#bibl104"/>
</relatedItem>
</bibl1Struct>
<biblStruct xml:id="bibl04">
<monogr>
<author> Swinburne, Algernon Charles</author>
<title>Atalanta in Calydon</title>
<imprint>
<pubPlace>London</pubPlace>
<publisher>Edward Moxon</publisher>
<date>1865</date>
</imprint>

128

3.11. Bibliographic Citations and References

</monogr>
</biblStruct>

The <ref> element in the above example could be replaced by the referenced <biblStruct> itself since a
<relatedItem> may contain any form of bibliographic reference. For example, one of the examples quoted
above might also be encoded as follows:

<biblStruct>
<monogr>
<author>Shirley, James</author>
<title type="main">The gentlemen of Venice</title>
<imprint>
<pubPlace>New York</pubPlace>
<publisher>Readex Microprint</publisher>
<date>1953</date>
</imprint>
<extent>1 microprint card, 23 x 15 cm.</extent>
</monogr>
<series>
<title>Three centuries of drama: English, 1642-1700</title>
</series>
<relatedItem type="original">
<biblStruct>
<monogr>
<author>Shirley, James</author>
<title type="main">The gentlemen of Venice</title>
<title type="subordinate">a tragi-comedie presented at the private
house in Salisbury Court by Her Majesties servants</title>
<imprint>
<pubPlace>London</pubPlace>
<publisher>H. Moseley</publisher>
<date>1655</date>
</imprint>
<extent>78 p.</extent>
</monogr>
</biblStruct>
</relatedItem>
</biblStruct>

3.11.2.6 Notes and Other Additional Information

Explanatory notes about the publication of unusual items, the form of an item (e.g. [Score] or [Microform]), or
its provenance (e.g. translation of ...) may be tagged using the <note> element. The same element may be used
for any descriptive annotation of a bibliographic entry in a database.

<note> contains a note or annotation.

For example:

<bibl>
<author>Coombs, James H., Allen H. Renear,
and Steven J. DeRose.</author>
<title level="a">Markup Systems and the Future of Scholarly
Text Processing.</title>
<title 1level="j">Communications of the ACM</title>

129

3. Elements Available in All TEI Documents

3.1

<biblScope>30.11 (November 1987): 933-947.</biblScope>
<note>Classic polemic supporting descriptive over procedural
markup in scholarly work.</note>
</bibl>

3.11.2.7 Order of Components within References

The order of elements in <bibl> elements is not constrained.

In <biblStruct> elements, the <analytic> element, if it occurs, must come first, followed by one or more
<monogr> and <series> elements, which may appear intermingled (as long as a <monogr> element comes
first). Within <analytic>, the title(s), author(s), editor(s), and other statements of responsibility may appear in
any order; it is recommended that all forms of the title be given together. Within <monogr>, the author, editor,
and statements of responsibility may either come first or else follow the monographic title(s). Following these,
the elements must appear in the following order:

« <note>s on the publication (and <meeting> elements describing the conference, in the case of a proceedings
volume)

« <edition> elements, each followed by any related <editor> or <respStmt> elements
e <imprint>
o <biblScope>

Within <imprint>, the elements allowed may appear in any order.

Finally, within the <series> information in a <biblStruct>, the sequence of elements is not constrained.

If more detailed structuring of a bibliographic description is required, the <biblFull> element should be used.
This is not further described here, as its contents are essentially equivalent to those of the <fileDesc> element
in the <teiHeader>, which is fully described in section 2.2. The File Description.

.3 Bibliographic Pointers

References which are pointers to bibliographic items, of whatever kind, should be treated in the same way as
other cross-references (see section 3.6. Simple Links and Cross-References). As discussed in that section, cross-
referencing within TEI texts is in general represented by means of <ptr> or <ref> elements. A target attribute
on these elements is used to supply an identifying value for the target of the cross-reference, which should be,
in the case of bibliographic elements, a bibliographic reference of some kind. Where the form of the reference
itself is unimportant, or may be reconstructed mechanically, or is not to be encoded, the <ptr> element is used,
as in the following example:

As shown above (<ptr target="#NEL80"/>) ...

Where the form of the reference is important, or contains additional qualifying information which is to
be kept but distinguished from the surrounding text, the <ref> element should be used, as in the following
example:

Nelson claims <ref target="#NEL80">(ibid, passim)</ref> ...

It may be important to distinguish between the short form of a bibliographic reference and some qualifying
or additional information. The latter should not appear within the scope of the <ref> element when this is the
case, as for example in an application concerned to normalize bibliographic references:

130

3.11. Bibliographic Citations and References

Nelson claims (<ref target="#NEL80">Nelson [1980]</ref> pages 13-37) ...

3.11.4 Relationship to Other Bibliographic Schemes

The bibliographic tagging defined here can capture the distinctions required by most bibliographic encoding
systems; for the benefit of users of some commonly used systems, the following lists of equivalences are offered,
showing the relationship of the markup defined here to the fields defined for bibliographic records in the Scribe,
BibTeX, and ProCite systems.

Listed below are the equivalences between the various bibliographic fields defined for use in the Scribe and
BibTeX systems of bibliographic databases and the elements defined in this module.® Elements and structures
available in the module defined here which have no analogues in Scribe and BibTeX are not noted.

address tag as <placeName> or <address>

annote tag as <note>

author tag as <author>

booktitle tag as <title level="m"> or <title> within <monogr>

chapter tag as <biblScope type="chapter">

date used only to record date entry was made in the bibliographic database; not supported

edition tag as <edition>

editor tag as <editor> or <respStmt>

editors tag as multiple <editor> or <respStmt> elements

fullauthor use the <reg> element, possibly inside a <choice> element, inside either an <author> or <name>
fullorganization use the <reg> element, possibly inside a <choice> element, inside a <name type="org">
howpublished tag as <note>, possibly using the form <note place="inline">

institution used only for issuer of technical reports; tag as <publisher>

journal tag as <title level="j"> or <title> within <monogr>

key used to specify an alternate sort key for the bibliographic item, for use instead of author's or editor's name;
not supported

meeting tag as <meeting> or as <note>

month use <date>; if the date is not in a trivially parseable form, use the when attribute to provide a normalized
equivalent in one of the format from XML Schema Part 2: Datatypes Second Edition

note tagas <note>

number tag as <biblScope type="issue"> or <biblScope type="number">; for technical report numbers, use
<idno type="docno">

9The BibTeX scheme is intentionally compatible with that of Scribe, although it omits some fields used by Scribe. Hence only one list of fields is
given here.

131

3. Elements Available in All TEI Documents

organization used only for sponsor of conference; use <name type="org"> within <respStmt> within <meet-
ing> element

pages tag as <biblScope type="pp">

publisher tag as <publisher>

school used only for institutions at which thesis work is done; tag as <publisher>
series tag as <title level="s"> or <title> within <series>

title tag as <title> in appropriate context or with appropriate level value

volume tag as <biblScope type="vol">

year tag as <date>; if the date is not in a trivially parseable form, use the when attribute to provide an ISO-
format equivalent

3.12 Passages of Verse or Drama

The following elements are included in the core module for the convenience of those encoding texts which
include mixtures of prose, verse and drama.
<I> (verse line) contains a single, possibly incomplete, line of verse.
<lg> (line group) contains a group of verse lines functioning as a formal unit, e.g. a stanza, refrain, verse
paragraph, etc.
<sp> (speech) An individual speech in a performance text, or a passage presented as such in a prose or
verse text.

<speaker> A specialized form of heading or label, giving the name of one or more speakers in a dramatic
text or fragment.

<stage> (stage direction) contains any kind of stage direction within a dramatic text or fragment.

Full details of other, more specialized, elements for the encoding of texts which are predominantly verse or
drama are described in the appropriate chapter of part three (for verse, see the verse base described in chapter
6. Verse; for performance texts, see the drama base described in chapter 7. Performance Texts). In this section,
we describe only the elements listed above, all of which can appear in any text, whichever of the three modes
prose, verse, or drama may predominate in it.

3.12.1 Core Tags for Verse

Like other written texts, verse texts or poems may be hierarchically subdivided, for example into books or
cantos. These structural subdivisions should be encoded using the general purpose <div> or <divl> (etc.)
elements described below in chapters 4. Default Text Structure and 6. Verse. The fundamental unit of a verse
text is the verse line rather than the paragraph, however.

The <> element is used to mark up verse lines, that is metrical rather than typographiclines. In some modern
or free verse, it may be hard to decide whether the typographic line is to be regarded as a verse line or not, but
the distinction is quite clear for verse following regular metrical patterns. Where a metrical line is interrupted
by a typographic line break, the encoder may choose to ignore the fact entirely or to use the empty <lb> (line
break) element discussed in 3.10. Reference Systems. By convention, the start of a metrical line implies the start
of a typographic line; hence there is no need to introduce an <lb> tag at the start of every <I> element, but only
at places where a new typographic line starts within a metrical line, as in the following example:

132

3.12. Passages of Verse or Drama

<1>0f Mans First Disobedience, and<lb/> the Fruit</1>
<1>0f that Forbidden Tree, whose<lb/> mortal tast</1>
<1>Brought Death into the World,<lb/> and all our woe,</1>
<l>With loss of Eden, till one greater Man</1>

<l>Restore us, and regain the blissful Seat...</1>

Source: [152]

In the original copy text, the presence of an ornamental capital at the start of the poem means that the
measure is not wide enough to print the first four lines on four lines; instead each metrical line occupies two
typographic lines, with a break at the point indicated. Note that this encoding makes no attempt to preserve
information about the whitespace or indentation associated with either kind of line; if regarded as essential, this
information would be recorded using the rend or rendition attributes discussed in 1.3.1.1. Global Attributes.

The <> element should not be used to represent typographic lines in non-verse materials: if the line-breaking
points in a prose text are considered important for analysis, they should be marked with the <lb> element.
Alternatively, a neutral segmentation element such as <seg> or <ab> may be used; see further discussion
of these elements in chapter 16. Linking, Segmentation, and Alignment. The <I> element is a member of the
model.lLike class, which is a subclass of the model.divPart class, along with elements from the model.pLike
(paragraph-like) class.

In some verse forms, regular groupings of lines are regarded as units of some kind, often identified by a
regular verse scheme. In stichic verse and couplets, groups of lines analogous to paragraphs are often indicated
by indentation. In other verse forms, lines are grouped into irregular sequences indicated simply by whitespace.
The <lg> or line group element may be used to mark any such grouping of elements from the model.ILike class.
As a member of the att.typed class, the <lg> element bears the following attributes:

att.typed provides attributes which can be used to classify or subclassify elements in any way.
@type characterizes the element in some sense, using any convenient classification scheme or

typology.
@subtype provides a sub-categorization of the element, if needed

which may be used to further categorize the line group where this is felt desirable, as in the following example.
This example also demonstrates the rend attribute to indicate whether or not a line is indented.

<lg>
<1>Come fill up the Glass,</1>
<l rend="indent">Round, round let it pass,</1>
<1>'Till our Reason be lost in our Wine:</1>
<l rend="indent">Leave Conscience's Rules</1>
<l rend="indent">To Women and Fools,</1>
<1>This only can make us divine.</1>
</1lg>
<lg n="Chorus" type="refrain">
<1>Then a Mohock, a Mohock I'll be,</1>
<1>No Laws shall restrain</1>
<1>0ur Libertine Reign,</1>
<W>We'll riot, drink on, and be free.</1>
</1lg>

Source: [|85]]
For some kinds of analysis, it may be useful to identify different kinds of line group within the same piece of

verse. Such line groups may self-nest, in much the same way as the un-numbered <div> element described in
chapter 4. Default Text Structure. For example:

133

3. Elements Available in All TEI Documents

<lg type="sonnet">

<lg type="octet">
<1>Thus speaks the Muse, and bends her brow severe:—</1>
<1>“Did I, <name>Lztitia</name>, lend my choicest lays,</1>
<1>And crown thy youthful head with freshest bays,</1>
<1>That all the' expectance of thy full-grown year</1>
<1>Should lie inert and fruitless? 0 revere</1>
<1>Those sacred gifts whose meed is deathless praise,</1>
<l>Whose potent charms the' enraptured soul can raise</1>
<l>Far from the vapours of this earthly sphere!</1>

</1lg>

<lg type="sestet">
<1>Seize, seize the lyre! resume the lofty strain!</1>
<1>'T is time, 't is time! hark how the nations round</1>
<l>With jocund notes of liberty resound,—</1>
<1>And thy own <name>Corsica</name> has burst her chain!</1>
<1>0 let the song to <name>Britain's</name> shores rebound,</1>
<l rend="indent(-1)">Where Freedom's once-loved voice is heard,

alas! in vain.”</1>
</1lg>
</1lg>

Source: [110]

It is often the case that verse line boundaries conflict with the boundaries of other structural elements. In
the following example, the single verse line ‘A Workeman in't... welcome’ is interrupted by a stage direction:

<1>Thou fumblest <name>Eros</name>, and my Queenes a Squire</1>
<l>More tight at this, then thou: Dispatch. 0 Loue,</1>

<1>That thou couldst see my Warres to day, and knew'st</1>

<1>The Royall Occupation, thou should'st see</1>

<l part="I">A Workeman in't. <stage>Enter an Armed Soldier.</stage>
</1>

<l part="F">Good morrow to thee, welcome. </1>

Source: [|181]]

In this encoding, the part attribute is used, as with <div>, to indicate that the last two <I> elements should be
regarded as the initial and final parts of a single line, rather than as two lines.
The same technique may be used where verse lines are collected together into units such as verse paragraphs:

<lg n="6" type="para">
<l-- ... -->
<l>Unprofitably travelling toward the grave,</1>
<l>Like a false steward who hath much received</1>
<l part="I">And renders nothing back.</1>
</1lg>
<lg type="para" n="7">
<l part="F">Was it for this</1>
<1>That one, the fairest of all rivers, loved</1>
<1>To blend his murmurs with my nurse's song,</1>
<l-- ... -->

</1lg>

Source: [223]

134

3.12. Passages of Verse or Drama

The part attribute may also be attached to an <Ig> element to indicate that it is incomplete, for example
because it forms part of a group that is divided between two speakers, as in the following example:

<sp>
<speaker>First Voice</speaker>
<lg type="stanza" part="I">
<1>But why drives on that ship so fast</1>
<l>Withouten wave or wind?</1>
</1lg>
</sp>
<Sp>
<speaker>Second Voice</speaker>
<lg type="stanza" part="F">
<1>The air is cut away before,</1>
<1>And closes from behind.</1>
</lg>
</sp>

Source: [/45]]

For alternative methods of aligning groups of lines which do not form simple hierarchic groups, or which
are discontinuous, see the more detailed discussion in chapter 16. Linking, Segmentation, and Alignment. For
discussion of other elements and attributes specific to the encoding of verse, see chapter 6. Verse.

3.12.2 Core Tags for Drama

Like other written texts, dramatic and other performance texts such as cinema or TV scripts are often hierar-
chically organized, for example into acts and scenes. These structural subdivisions should be encoded using
the general purpose <div> or <divl> (etc.) elements described below in chapters 4. Default Text Structure and
7. Performance Texts, Within these divisions, the body of a performance text typically consists of speeches, often
prefixed by a phrase indicating who is speaking, and occasionally interspersed with stage directions of various
kinds.

In the following simple example, each speech consists of a single paragraph:

<div2 n="I.2" type="scene">
<head>Scene 2.</head>
<stage type="setting">Peachum, Filch.</stage>
<sp>
<speaker>FILCH.</speaker>
<p>Sir, Black Moll hath sent word her Trial comes on in
the Afternoon, and she hopes you will order Matters
so as to bring her off.</p>
</sp>
<sp>
<speaker>PEACHUM.</speaker>
<p>Why, she may plead her Belly at worst; to my
Knowledge she hath taken care of that Security.
But, as the Wench is very active and industrious,
you may satisfy her that I'll soften the Evidence.</p>
</sp>
<Sp>
<speaker>FILCH.</speaker>
<p>Tom Gagg, sir, is found guilty.</p>
</sp>
</div2>

135

3. Elements Available in All TEI Documents

Source: [185]]

In the following example, each speech consists of a sequence of verse lines, some of them being marked as
metrically incomplete:

<divl n="I" type="Act">
<head>ACT I</head>
<div2 n="1" type="Scene">
<head>SCENE I</head>
<stage rend="italic">Enter Barnardo and Francisco,
two Sentinels, at several doors</stage>
<Sp>
<speaker>Barn</speaker>
<l part="Y">Who's there?</1>
</sp>
<Sp>
<speaker>Fran</speaker>
<l>Nay, answer me. Stand and unfold yourself.</1>
</sp>
<sp>
<speaker>Barn</speaker>
<l part="I">Long live the King!</1>
</sp>
<Sp>
<speaker>Fran</speaker>
<l part="M">Barnardo?</1>
</sp>
<Sp>
<speaker>Barn</speaker>
<l part="F">He.</1>
</sp>
<sp>
<speaker>Fran</speaker>
<1>You come most carefully upon your hour.</1>
</sp>
<Sp>
<speaker>Barn</speaker>
<1>'Tis now struck twelve. Get thee to bed, Francisco.</1>
</sp>
<Sp>
<speaker>Fran</speaker>
<W>For this relief much thanks. 'Tis bitter cold,</1>
<l part="I">And I am sick at heart.</1>
</sp>
</div2>
</divl>

Source: [|185]]

In some cases, as here in the First Quarto of Hamlet, the printed speaker attributions need to be supplemented
by use of the who attribute; again, the lines are marked as complete or incomplete:

<stage>Enter two Centinels.

<add place="margin">Now call'd <name xml:id="barnardo">Bernardo</name> &
<name xml:id="francisco">Francesco</name>.</add>

</stage>

<sp who="#francisco">

136

3.12. Passages of Verse or Drama

<speaker>1.</speaker>
<l part="Y">Stand: who is that?</1>
</sp>
<sp who="#barnardo">
<speaker>2.</speaker>
<l part="Y">Tis I.</1>
</sp>
<sp who="#francisco">
<speaker>1l.</speaker>
<1>0 you come most carefully vpon your watch,</1>
</sp>
<sp who="#barnardo">
<speaker>2.</speaker>
<1>And if you meete Marcellus and Horatio,</1>
<1>The partners of my watch, bid them make haste.</1>
</sp>
<sp who="#francisco">
<speaker>1.</speaker>
<l part="Y">I will: See who goes there.</1>
</sp>
<stage>Enter Horatio and Marcellus.</stage>

Source: [|186]]

By contrast with the preceding examples, the following encodes an early printed edition without making any
assumption about which parts are prose or verse:

<divl n="I" type="act">
<div2 n="1" type="scene">
<head rend="italic">Actus primus, Scena prima.</head>
<stage rend="italic" type="setting">A tempestuous
noise of Thunder and Lightning heard: Enter
a Ship-master, and a Boteswaine.</stage>
<sp>
<speaker>Master.</speaker>
<p>Bote-swaine.</p>
</sp>
<Sp>
<speaker>Botes.</speaker>
<p>Heere Master: What cheere?</p>
</sp>
<sp>
<speaker>Mast.</speaker>
<p>Good: Speake to th' Mariners: fall
too't, yarely, or we run our selues a ground,
bestirre, bestirre. <stage type="move">Exit.</stage>
</p>
</sp>
<stage type="move">Enter Mariners.</stage>
<Sp>
<speaker>Botes.</speaker>
<p>Heigh my hearts, cheerely, cheerely my harts: vyare,
yare: Take in the toppe-sale: Tend to th' Masters whistle:
Blow till thou burst thy winde, if roome e-nough.</p>
</sp>
</div2>
</divl>

137

3. Elements Available in All TEI Documents

Source: [187]]

The <sp> and <stage> elements should also be used to mark parts of a text otherwise in prose which are
presented as if they were dialogue in a play. The following example is taken from a 19th century novel in which
passages of narrative and passages of dialogue are mixed within the same chapter:

<sp>
<speaker>The reverend Doctor Opimiam</speaker>
<p>I do not think I have named a single unpresentable fish.</p>
</sp>
<sp>
<speaker>Mr Gryll</speaker>
<p>Bream, Doctor: there is not much to be said for bream.</p>
</sp>
<SP>
<speaker>The Reverend Doctor Opimiam</speaker>
<p>0n the contrary, sir, I think there is much to be said for him.
In the first place ...</p>
<p>Fish, Miss Gryll — I could discourse to you on fish by the

hour: but for the present I will forbear ...</p>
</sp>
Source: [162f]
<Sp>
<speaker>Lord Curryfin</speaker>
<stage>(after a pause).</stage>
<p>
<q>Mass</q> as the second grave-digger says
in <title>Hamlet</title>, <gq>I cannot tell.</g>
</p>
</sp>
<p>A chorus of laughter dissolved the sitting.</p>
Source: [|162]]

3.13 Overview of the Core Module
All the elements described in this chapter are provided by the core module.

Module core: Elements common to all TEI documents

o Elements defined: abbr add addrLine address analytic author bibl biblScope biblStruct binaryObject
cb| choice cit corr date del desc distinct divGen editor email emph expan foreign gap gloss graphic head
headItem headLabel hiimprintindexitemllabellblglistlistBibl measure measureGrp meeting mentioned
milestone monogr name note num orig p pb postBox postCode ptr pubPlace publisher| q quote ref reg
relatedItem resp respStmt rs said series sic soCalled sp speaker stage street teiCorpus term time title unclear

The selection and combination of modules to form a TEI schema is described in 1.2. Defining a TEI Schema.

138

Chapter 4

Default Text Structure

This chapter describes the default high-level structure for TEI documents. A full TEI document combines
metadata describing it, represented by a <teiHeader> element, with the document itself, represented by a <text>
element. This basic pair is represented by a <TEI> element. The <teiHeader> element is specified by the header
module, which is fully described in chapter 2. The TEI Header. The remainder of the present chapter describes
the <text> element and its high-level constituents.

A varijant on this basic form, the <teiCorpus>, is also defined for the representation of language corpora,
or other collections of encoded texts. A <teiCorpus> consists of one or more complete <TEI> elements,
each combining a <teiHeader> and a <text> which itself carries a <teiHeader>. This permits the encoder to
distinguish metadata applicable to the whole collection of encoded texts, which is represented by the outermost
<teiHeader>, from that applicable to each of the individual <TEI> elements within the corpus. Further
information about the organization and encoding of language corpora is given in chapter 15. Language Corpora.

In summary, when the default structure module is included in a schema, the following elements are available
for the representation of the outermost structure of a TEI document:

<TEI> (TEI document) contains a single TEI-conformant document, comprising a TEI header and a text,
either in isolation or as part of a <teiCorpus> element.

<teiCorpus> contains the whole of a TEI encoded corpus, comprising a single corpus header and one or
more TEI elements, each containing a single text header and a text.

<teiHeader> (TEI Header) supplies the descriptive and declarative information making up an electronic
title page prefixed to every TEI-conformant text.

<text> contains a single text of any kind, whether unitary or composite, for example a poem or drama, a
collection of essays, a novel, a dictionary, or a corpus sample.

As noted above, the <teiHeader> element is formally declared in the header module (see chapter 2. The TEI
Header). A TEI document may also contain elements from the model.resourceLike class (such as a collection of
facsimile images, or a feature system declaration) if the appropriate module is included in a schema (see further
11.1. Digital Facsimiles and 18.11. Feature System Declaration respectively). By default, however, this class is not
populated and hence only the elements <TEI>, <text>, and <teiCorpus> are available as major parts of a TEI
document. These three elements are provided by the textstructure module described by the present chapter.

TEI texts may be regarded either as unitary, that is, forming an organic whole, or as composite, that is,
consisting of several components which are in some important sense independent of each other. The distinction
is not always entirely obvious: for example a collection of essays might be regarded as a single item in some
circumstances, or as a number of distinct items in others. In such borderline cases, the encoder must choose
whether to treat the text as unitary or composite; each may have advantages and disadvantages in a given
situation.

Whether unitary or composite, the text is marked with the <text> tag and may contain front matter, a text

139

4. Default Text Structure

body, and back matter. In unitary texts, the text body is tagged <body>; in composite texts, where the text
body consists of a series of subordinate texts or groups, it is tagged <group>. The overall structure of any text,
unitary or composite, is thus defined by the following elements:

<front> (front matter) contains any prefatory matter (headers, title page, prefaces, dedications, etc.) found
at the start of a document, before the main body.

<body> (text body) contains the whole body of a single unitary text, excluding any front or back matter.

<group> contains the body of a composite text, grouping together a sequence of distinct texts (or groups
of such texts) which are regarded as a unit for some purpose, for example the collected works of an
author, a sequence of prose essays, etc.

<back> (back matter) contains any appendixes, etc. following the main part of a text.

The overall structure of a unitary text is:

<TEI>
<teiHeader>
<l-- -->
</teiHeader>
<text>
<front>
<!-- front matter of copy text, if any, goes here -->
</front>
<body>
<!-- body of copy text goes here -->
</body>
<back>
<!-- back matter of copy text, if any, goes here -->
</back>
</text>
</TEI>

The overall structure of a composite text made up of two unitary texts is:

<TEI>
<teiHeader>
<l-- -->
</teiHeader>
<text>
<front>
<!-- front matter for composite text -->
</front>
<group>
<text>
<front>
<!-- front matter of first unitary text, if any -->
</front>
<body>
<!-- body of first unitary text -->
</body>
<back>
<!-- back matter of first unitary text, if any -->
</back>
</text>
<text>
<body>

140

4.1. Divisions of the Body

4.1

4.1.1

<!-- body of second unitary text -->
</body>
</text>

</group>

<back>
<!-- back matter for composite text, if any -->

</back>

</text>

</TEI>

Finally, a <floatingText> element is provided for the case where one text is embedded within another, but
does not contribute to its hierarchical organization, for example because it interrupts it, or simply quoted within
it. This is useful in such common literary contexts as the ‘play within a play’ or the narrative interrupted by
other (often deeply nested) multiple narratives.

Each of these elements is further described in the remainder of this chapter. Elements <front>and <back> are
further discussed in sections 4.5. Front Matter and 4.7. Back Matter. The <group> and <floatingText> elements,
used for more complex or composite text structures, are further discussed in section 4.3. Grouped and Floating
Texts. Other textual elements, such as paragraphs, lists or phrases, which nest within these major structural
elements, are discussed in chapter 3. Elements Available in All TEI Documents, in the case of elements which can
appear in any kind of document, or elsewhere in the case of elements specific to particular kinds of document.

Divisions of the Body

In some texts, the body consists simply of a sequence of low-level structural items, referred to here as
components or component-level elements (see section 1.3. The TEI Class System). Examples in prose texts include
paragraphs or lists; in dramatic texts, speeches and stage directions; in dictionaries, dictionary entries. In other
cases sequences of such elements will be grouped together hierarchically into textual divisions and subdivisions,
such as chapters or sections. The names used for these structural subdivisions of texts vary with the genre and
period of the text, or even at the whim of the author, editor, or publisher. For example, a major subdivision of an
epic or of the Bible is generally called a ‘book], that of a report is usually called a ‘part’ or ‘section, that of a novel
a ‘chapter’ — unless it is an epistolary novel, in which case it may be called a ‘letter’ Even texts which are not
organized as linear prose narratives, or not as narratives at all, will frequently be subdivided in a similar way:
a drama into ‘acts’ and ‘scenes’; a reference book into ‘sections’; a diary or day book into ‘entries’; a newspaper
into ‘issues’ and ‘sections, and so forth.

Because of this variety, these Guidelines propose that all such textual divisions be regarded as occurrences
of the same neutrally named elements, with an attribute type used to categorize elements independently of
their hierarchic level. Two alternative styles are provided for the marking of these neutral divisions: numbered
and un-numbered. Numbered divisions are named <div1>, <div2>, etc., where the number indicates the depth
of this particular division within the hierarchy, the largest such division being ‘div1} any subdivision within
it being ‘div2} any further sub-sub-division being ‘div3’ and so on. Un-numbered divisions are simply named
<div>, and allowed to nest recursively to indicate their hierarchic depth. The two styles must not be combined
within a single <front>, <body>, or <back> element.

Un-numbered Divisions

The following element is used to identify textual subdivisions in the un-numbered style:

<div> (text division) contains a subdivision of the front, body, or back of a text.

As a member of the class att.typed, this element has the following additional attributes:

att.typed provides attributes which can be used to classify or subclassify elements in any way.

141

4. Default Text Structure

@type characterizes the element in some sense, using any convenient classification scheme or
typology.
@subtype provides a sub-categorization of the element, if needed

Using this style, the body of a text containing two parts, each composed of two chapters, might be represented
as follows:

<body>
<div type="part" n="1">
<div type="chapter" n="1">
<!-- text of part 1, chapter 1 -->
</div>
<div type="chapter" n="2">
<!-- text of part 1, chapter 2 -->
</div>
</div>
<div type="part" n="2">
<div n="1" type="chapter">
<!-- text of part 2, chapter 1 -->
</div>
<div n="2" type="chapter">
<!-- text of part 2, chapter 2 -->
</div>
</div>
</body>

4.1.2 Numbered Divisions
The following elements are used to identify textual subdivisions in the numbered style:

<div1> (level-1 text division) contains a first-level subdivision of the front, body, or back of a text.
<div2> (level-2 text division) contains a second-level subdivision of the front, body, or back of a text.
<div3> (level-3 text division) contains a third-level subdivision of the front, body, or back of a text.
<div4a> (level-4 text division) contains a fourth-level subdivision of the front, body, or back of a text.
<div5> (level-5 text division) contains a fifth-level subdivision of the front, body, or back of a text.
<div6> (level-6 text division) contains a sixth-level subdivision of the front, body, or back of a text.
<div7> (level-7 text division) contains the smallest possible subdivision of the front, body or back of a text,
larger than a paragraph.
As members of the class att.typed these elements all bear the following additional attributes:

att.typed provides attributes which can be used to classify or subclassify elements in any way.
@type characterizes the element in some sense, using any convenient classification scheme or
typology.

@subtype provides a sub-categorization of the element, if needed

The largest possible subdivision of the body is <divl> element and the smallest possible <div7>. If numbered
divisions are in use, a division at any one level (say, <div3>), may contain only numbered divisions at the next
lowest level (in this case, <div4>).

Using this style, the body of a text containing two parts, each composed of two chapters, might be represented
as follows:

142

4.1. Divisions of the Body

<body>
<divl type="part" n="1">
<div2 type="chapter" n="1">
<!-- text of part 1, chapter 1 -->
</div2>
<div2 type="chapter" n="2">
<!-- text of part 1, chapter 2 -->
</div2>
</divl>
<divl type="part" n="2">
<div2 n="1" type="chapter">
<!-- text of part 2, chapter 1 -->
</div2>
<div2 n="2" type="chapter">
<!-- text of part 2, chapter 2 -->
</div2>
</divl>
</body>

4.1.3 Numbered or Un-numbered?

Within the same <front>, <body>, or <back> element, all hierarchic subdivisions must be marked using either
nested <div> elements, or <divl>, <div2> etc. elements nested as appropriate; the two styles must not be mixed.

The choice between numbered and un-numbered divisions will depend to some extent on the complexity
of the material: un-numbered divisions allow for an arbitrary depth of nesting, while numbered divisions
limit the depth of the tree which can be constructed. Where divisions at different levels should be processed
differently (for example to ensure that chapters, but not sections, begin on a new page), numbered divisions
slightly simplify the task of defining the desired processing for each level, though this distinction could also
be made by supplying this information on the type attribute of an un-numbered <div>. Some software may
find numbered divisions easier to process, as there is no need to maintain knowledge of the whole document
structure in order to know the level at which a division occurs; such software may, however, find it difficult
to cope with some other aspects of the TEI scheme. On the other hand, in a collection of many works it may
prove difficult or impossible to ensure that the same numbered division always corresponds with the same type
of textual feature: a ‘chapter’ may be at level 1 in one work and level 3 in another.

Whichever style is used, the global n and xml:id attributes (section 1.3.1.1. Global Attributes) may be used
to provide reference strings or labels for each division of a text, where appropriate. Such labels should be
provided for each section which is regarded as significant for referencing purposes (on reference systems, see
further section 3.10. Reference Systems).

As indicated above, the type and subtype attributes provided by the att.typed class may be used to provide
a name or description for the division. Typical values might be ‘book; ‘chapter’, ‘section, ‘part; or (for verse
texts) ‘book;, ‘canto; ‘stanza, or (for dramatic texts) ‘act; ‘scene’ The following extended example uses numbered
divisions to indicate the structure of a novel, and illustrates the use of the attributes discussed above. It also
uses some elements discussed in section 4.2. Elements Common to All Divisions and the <p> element discussed
in section 3.1. Paragraphs.

<divl type="book" n="I" xml:id="JA0Q100">
<head>Book I.</head>
<div2 type="chapter" n="1" xml:id="JA0101">
<head>0f writing lives in general, and particularly of Pamela, with a word
by the bye of Colley Cibber and others.</head>

143

4. Default Text Structure

<p>It is a trite but true observation, that examples work more forcibly on
the mind than precepts: ... </p>
<!-- remainder of chapter 1 here -->
</div2>
<div2 type="chapter" n="2" xml:id="JA0102">
<head>0f Mr. Joseph Andrews, his birth, parentage, education, and great
endowments; with a word or two concerning ancestors.</head>
<p>Mr. Joseph Andrews, the hero of our ensuing history, was esteemed to
be the only son of Gaffar and Gammar Andrews, and brother to the
illustrious Pamela, whose virtue is at present so famous ... </p>
<!-- remainder of chapter 2 here -->
</div2>
<!-- remaining chapters of Book 1 here -->
<trailer>The end of the first Book</trailer>
</divl>
<divl type="book" n="II" xml:id="JA0200">
<head>Book II</head>
<div2 type="chapter" n="1" xml:id="JA0201">
<head>0f divisions in authors</head>
<p>There are certain mysteries or secrets in all trades, from the highest
to the lowest, from that of <term>prime-ministering</term>, to this of
<term>authoring</term>, which are seldom discovered unless to members of
the same calling ... </p>
<p>I will dismiss this chapter with the following observation: that it
becomes an author generally to divide a book, as it does a butcher to
joint his meat, for such assistance is of great help to both the reader
and the carver. And now having indulged myself a little I will endeavour
to indulge the curiosity of my reader, who is no doubt impatient to know
what he will find in the subsequent chapters of this book.</p>
</div2>
<div2 type="chapter" n="2" xml:id="JA0202">
<head>A surprising instance of Mr. Adams's short memory, with the
unfortunate consequences which it brought on Joseph.
</head>
<p>Mr. Adams and Joseph were now ready to depart different ways ... </p>
</div2>
</divl>

Source: [75]

As an alternative (or complement) to this use of the type attribute to characterize neutrally named division
elements, the modification mechanisms discussed in section 23.2. Personalization and Customization may be
used to define new elements such as <chapter>, <part>, etc. To make this simpler, a single member model class
is defined for each of the neutrally named division elements: model.divLike (containing <div>), model.div1iLike
(containing <divl>), model.div2Like (containing <div2>), etc. For example, suppose that the body of a text
consists of a series of diary entries, each of which is potentially divided into entries for the morning and the
afternoon. This might be represented in any of the following ways. First, using the un-numbered style:

<body>
<div type="entry" n="1">
<div type="morning" n="1.1">

<p>....</p>

</div>

<div type="afternoon" n="1.2">
<p>....</p>

144

4.1. Divisions of the Body

</div>
</div>
<div type="entry" n="2">
<div type="morning" n="2.1">
<p>....</p>
</div>
<div type="afternoon" n="2.2">
<p>....</p>
</div>
</div>
<l-- ...-->

</body>

Equivalently, using the numbered style:

<body>
<divl type="entry" n="1">
<div2 type="morning" n="1.1">
<p>....</p>
</div2>
<div2 type="afternoon" n="1.2">
<p>....</p>
</div2>
</divl>
<divl type="entry" n="2">
<div2 type="morning" n="2.1">
<p>....</p>
</div2>
<div2 type="afternoon" n="2.2">
<p>....</p>
</div2>
</divl>
<l-- ,...-->

</body>

Now, assuming a customization in which a new element <diaryEntry> has been added to the model.divLike

class:

<body
xmlns:my="http://www.example.org/ns/nonTEI">
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="entry" n="1">
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="morning" n="1.1">
<p>....</p>
</diaryEntry>
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="afternoon" n="1.2">
<p>....</p>
</diaryEntry>
</diaryEntry>
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="entry" n="1">
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"

145

4. Default Text Structure

type="morning" n="1.1">
<p>....</p>

</diaryEntry>

<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="afternoon" n="1.2">
<p>....</p>

</diaryEntry>

</diaryEntry>
<l-- ,...-->

</body>

And finally, assuming a customization in which three new elements have been added: <diaryEntry> to the
model.div1 class, and <amEntry> and <pmEntry> both to the model.div2 class:

<body
xmlns:my="http://www.example.org/ns/nonTEI">
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="entry" n="1">
<amEntry xmlns="http://www.example.org/ns/nonTEI"
type="morning" n="1.1">
<p>....</p>
</amEntry>
<pmEntry xmlns="http://www.example.org/ns/nonTEI"
type="afternoon" n="1.2">
<p>....</p>
</pmEntry>
</diaryEntry>
<diaryEntry xmlns="http://www.example.org/ns/nonTEI"
type="entry" n="1">
<amEntry xmlns="http://www.example.org/ns/nonTEI"
type="morning" n="1.1">
<p>....</p>
</amEntry>
<pmEntry xmlns="http://www.example.org/ns/nonTEI"
type="afternoon" n="1.1">
<p>....</p>
</pmEntry>
</diaryEntry>
<l-- ... -->

</body>

More information about the customization techniques exemplified here is provided in 23.2. Personalization
and Customization.

4.1.4 Partial and Composite Divisions

In most situations, the textual subdivisions marked by <div> or <divl> (etc.) elements will be both complete
and identically organized with reference to the original source. For some purposes however, in particular
where dealing with unusually large or unusually small texts, encoders may find it convenient to present as
textual divisions sequences of text which are incomplete with reference to the original text, or which are in fact
an ad hoc agglomeration of tiny texts. Moreover, in some kinds of texts it is difficult or impossible to determine
the order in which individual subdivisions should be combined to form the next higher level of subdivision, as
noted below.

To overcome these problems, the following additional attributes are defined for all elements in the att.divLike
class:

146

4.1. Divisions of the Body

att.divLike provides attributes common to all elements which behave in the same way as divisions.
@org (organization) specifies how the content of the division is organized.

@sample indicates whether this division is a sample of the original source and if so, from which
part.

@part specifies whether or not the division is fragmented by some other structural element, for
example a speech which is divided between two or more verse stanzas.

For example, an encoder might choose to transcribe only the first two thousand words of each chapter from
a novel. In such a case, each chapter might conveniently be regarded as a partial division, and tagged with a
<div> element in the following form:

<div
n="xx"
sample="initial"
part="Y"
type="chapter">
<p> ... </p>
</div>

where xx represents a number for the chapter, and the part attribute takes the value Y to indicate that this
division is incomplete in some respect. Other possible values for this attribute indicate whether material has
been omitted at the end (F), the beginning (B), or in the middle (M) of the division, while the <gap> element
(3.4.3. Additions, Deletions, and Omissions) may be used to indicate exactly where material has been omitted:

<div n="xx" part="M" type="chapter">

<p> ... </p>
<gap extent="2" reason="sampling"/>
<p> ... </p>

</div>

The <samplingDecl> element in the TEI Header should also be used to record the principles underlying the
selection of incomplete samples, as further described in section 2.3.2. The Sampling Declaration.

The following example demonstrates how a newspaper column composed of very short unrelated snippets
may be encoded using these attributes:

<divl type="storylist" org="composite">
<head>News in brief</head>
<div2 type="story">
<head>Police deny <soCalled>losing</soCalled> bomb</head>
<p>Scotland Yard yesterday denied claims in the Sunday
Express that anti-terrorist officers trailing an IRA van
loaded with explosives in north London had lost track of
it 10 days ago.</p>
</div2>
<div2 type="story">
<head>Hotel blaze</head>
<p>Nearly 200 guests were evacuated before dawn
yesterday after fire broke out at the Scandic
Crown hotel in the Royal Mile, Edinburgh.</p>
</div2>
<div2 type="story">

147

4. Default Text Structure

4.2

<head>Test match split</head>
<p>Test Match Special next summer will be split
between Radio 5 and Radio 3, after protests this
year that it disrupted Radio 3's music schedule.</p>
</div2>
</divl>

Source: [204]

The org attribute on the <divl> element is used here to indicate that individual stories in this group, marked
here as <div2>, are really quite independent of each other, although they are all marked as subdivisions of the
whole group. They can be read in any order without affecting the sense of the piece; indeed, in some cases,
divisions of this nature are printed in such a way as to make it impossible to determine the order in which they
are intended to be read. Individual stories can be added or removed without affecting the existing components.

This method of encoding composite texts as composite divisions has some limitations compared with
the more general and powerful mechanisms discussed in section 4.3.1. Grouped Texts. However, it may be
preferable in some circumstances, notably where the individual texts are very small.

Elements Common to All Divisions

The divisions of any kind of text may sometimes begin with a brief heading or descriptive title, with or without
a byline, an epigraph or brief quotation, or a salutation such as one finds at the start of a letter. They may also
conclude with a brief trailer, byline, postscript, or signature. Many of these (e.g. a byline) may appear either at
the start or at the end of a text division proper.

To support this heterogeneity, the TEI architecture defines five classes, all of which are populated by this
module:

model.divTop groups elements appearing at the beginning of a text division.

model.divTopPart groups elements which can occur only at the beginning of a text division.

model.divBottom groups elements appearing at the end of a text division.

model.divBottomPart groups elements which can occur only at the end of a text division.

model.divWrapper groups elements which can appear at either top or bottom of a textual division.
By default the class model.divWrapper provides the following special-purpose elements:

<argument> A formal list or prose description of the topics addressed by a subdivision of a text.

<byline> contains the primary statement of responsibility given for a work on its title page or at the head
or end of the work.

<dateline> contains a brief description of the place, date, time, etc. of production of a letter, newspaper
story, or other work, prefixed or suffixed to it as a kind of heading or trailer.

<docAuthor> (document author) contains the name of the author of the document, as given on the title
page (often but not always contained in a byline).

<docDate> (document date) contains the date of a document, as given (usually) on a title page.

<epigraph> contains a quotation, anonymous or attributed, appearing at the start of a section or chapter,
or on a title page.

The class model.divlop combines these elements with the following elements, which populate the
model.divTopPart class:

<head> (heading) contains any type of heading, for example the title of a section, or the heading of a list,
glossary, manuscript description, etc.

<salute> (salutation) contains a salutation or greeting prefixed to a foreword, dedicatory epistle, or other
division of a text, or the salutation in the closing of a letter, preface, etc.

148

4.2. Elements Common to All Divisions

<opener> groups together dateline, byline, salutation, and similar phrases appearing as a preliminary

group at the start of a division, especially of a letter.

For further details of the <head> element, see section 4.2.1. Headings and Trailers; for <epigraph> and
<argument>, see section 4.2.3. Arguments, Epigraphs, and Postscripts; for <opener>, see section 4.2.2. Openers
and Closers.

The class model.divBottom combines these elements with the following elements, which populate the
model.divBottomPart class:

<closer> groups together salutations, datelines, and similar phrases appearing as a final group at the end of

a division, especially of a letter.

<signed> (signature) contains the closing salutation, etc., appended to a foreword, dedicatory epistle, or

other division of a text.

<trailer> contains a closing title or footer appearing at the end of a division of a text.

<postscript> contains a postscript, e.g. to a letter.

4.2.1

For further details of the <trailer> element, see section 4.2.1. Headings and Trailers; for the <closer> and
<signed> elements, section 4.2.2. Openers and Closers; for the <postscript> element, section 4.2.3. Arguments,
Epigraphs, and Postscripts.

Headings and Trailers

The <head> element is used to identify a heading prefixed to the start of any textual division, at any level. A
given division may contain more than one such element, as in the following example:

<divl n="Etym">
<head>Etymology</head>
<head>(Supplied by a late consumptive usher to a
grammar school)</head>
<p>The pale Usher — threadbare in coat, heart,
body and brain; I see him now. He was ever
dusting his old lexicons and grammars, ...</p>
</divl>

Source: [|149]]

Unlike some other markup schemes, the TEI scheme does not require that headings attached to textual
subdivisions at different hierarchic levels have different identifiers. All kinds of heading are marked identically
using the <head> tag; the type or level of heading intended is implied by the immediate parent of the <head>
element, which may for example be a <divl>, <div2>, etc., an un-numbered <div>, or any member of the
model.listLike class. However, as with <div> elements, the encoder may choose to extend the model.headLike
class of which <head> is the sole member to include other such elements if required.

In certain kinds of text (notably newspapers), there may be a need to categorize individual headings within
the sequence at the start of a division, for example as ‘main” headings, or ‘detail’ headings: this may readily
be done using the type or subtype attribute. Specific elements are provided for certain kinds of heading-like
features, (notably <byline>, <dateline>, and <salute>; see further section 4.2.2. Openers and Closers), but the
type or subtype attributes must be used to discriminate among other forms of heading. These attributes are
provided, as elsewhere, by the att.typed attribute class of which the <head> element is a member.

In the following example, taken from a British newspaper, the lead story and its associated headlines have
been encoded as a <div> element, with appropriate model.divTop elements attached:

149

4. Default Text Structure

<div type="story">
<head rend="underlined" type="sub">President pledges safeguards for 2,400 British
troops in Bosnia</head>
<head rend="scream" type="main">Major agrees to enforced no-fly zone</head>
<byline>By George Jones, Political Editor, in Washington</byline>
<p>Greater Western intervention in the conflict in
former Yugoslavia was pledged by President Bush ...</p>
</div>

Source: [53]]

In older writings, the headings or incipits may be longer than in modern works. When heading-like material
appears in the middle of a text, the encoder must decide whether or not to treat it as the start of a new division.
If the phrase in question appears to be more closely connected with what follows than with what precedes it,
then it may be regarded as a heading and tagged as the <head> of a new <div> element. If it appears to be simply
inserted or superimposed — as for example the kind of ‘pull quotes’ often found in newspapers or magazines,
then the <quote>, <q>, or <cit> element may be more appropriate.

The <trailer> element, which can appear at the end of a division only, is used to mark any heading-like feature
appearing in this position, as in this example:

<div type="book" n="I">
<head>In the name of Christ here begins the
first book of the ecclesiastical history of Georgius Florentinus,
known as Gregory, Bishop of Tours.</head>
<div>
<head>Chapter Headings</head>
<list>
<!-- list of chapter heads omitted -->
</list>
</div>
<div>
<head>In the name of Christ here begins Book I of the history.</head>
<p>Proposing as I do ...</p>
<p>From the Passion of our Lord until the death of Saint Martin four
hundred and twelve years passed.</p>
<trailer>Here ends the first Book, which covers five thousand, five
hundred and ninety-six years from the beginning of the world down
to the death of Saint Martin.</trailer>
</div>
</div>

Source: [98]]

4.2.2 Openers and Closers

In addition to headings of various kinds, divisions sometimes include more or less formulaic opening or closing
passages, typically conveying such information as the name and address of the person to whom the division is
addressed, the place or time of its production, a salutation or exhortation to the reader, and so on. Divisions in
epistolary form are particularly liable to include such features. Additional elements for the detailed encoding
of personal names, dates, and places are provided in chapter 13. Names, Dates, People, and Places. For simple
cases, the following elements should be adequate:

<byline> contains the primary statement of responsibility given for a work on its title page or at the head
or end of the work.

150

4.2. Elements Common to All Divisions

<dateline> contains a brief description of the place, date, time, etc. of production of a letter, newspaper
story, or other work, prefixed or suffixed to it as a kind of heading or trailer.

<salute> (salutation) contains a salutation or greeting prefixed to a foreword, dedicatory epistle, or other
division of a text, or the salutation in the closing of a letter, preface, etc.

<signed> (signature) contains the closing salutation, etc., appended to a foreword, dedicatory epistle, or
other division of a text.

The <byline> and <dateline> elements are used to encode headings which identify the authorship and
provenance of a division. Although the terminology derives from newspaper usage, there is no implication
that <dateline> or <byline> elements apply only to newspaper texts. The following example illustrates use of
the <dateline> and <signed> elements at the end of the preface to a novel:

<div type="preface">
<head>To Henry Hope.</head>
<p>It is not because this volume was conceived and partly
executed amid the glades and galleries of the Deepdene,
that I have inscribed it with your name. ... I shall find a
reflex to their efforts in your own generous spirit and
enlightened mind.
</p>
<closer>
<signed xml:lang="el">D.</signed>
<dateline>Grosvenor Gate, May-Day, 1844</dateline>
</closer>
</div>

Source: [64]]

Where a sequence of such elements appear together, either at the beginning or end of an element, it may be
convenient to group them together using one of the following elements:

<opener> groups together dateline, byline, salutation, and similar phrases appearing as a preliminary
group at the start of a division, especially of a letter.

<closer> groups together salutations, datelines, and similar phrases appearing as a final group at the end of
a division, especially of a letter.

The following examples demonstrate the use of the <opener> and <closer> grouping elements:

<div type="narrative" n="6">
<head>Sixth Narrative</head>
<head>contributed by Sergeant Cuff</head>
<div type="fragment" n="6.1">
<opener>
<dateline>
<name type="place">Dorking, Surrey,</name>
<date>July 30th, 1849</date>
</dateline>
<salute>To <name>Franklin Blake, Esq.</name> Sir, —</salute>
</opener>
<p>I beg to apologize for the delay that has occurred in the
production of the Report, with which I engaged to furnish you.
I have waited to make it a complete Report ...</p>
<closer>
<salute>I have the honour to remain, dear sir, your
obedient servant </salute>

151

4. Default Text Structure

<signed>
<name>RICHARD CUFF</name> (late sergeant in the
Detective Force, Scotland Yard, London). </signed>
</closer>
</div>
</div>

Source: [50]

<div type="letter" n="14">
<head>Letter XIV: Miss Clarissa Harlowe to Miss Howe</head>
<opener>
<dateline>Thursday evening, March 2.</dateline>
</opener>
<p>0n Hannah's depositing my long letter ...</p>
<p>An interruption obliges me to conclude myself
in some hurry, as well as fright, what I must ever be,</p>
<closer>
<salute>Yours more than my own,</salute>
<signed>Clarissa Harlowe</signed>
</closer>
</div>

Source: [|174]]

For further discussion of the encoding of dates and of names of persons and places, see section 3.5.4. Dates
and Times and chapter 13. Names, Dates, People, and Places.

4.2.3 Arguments, Epigraphs, and Postscripts

The <argument> element may be used to encode the prefatory list of topics sometimes found at the start
of a chapter or other division. It is most conveniently encoded as a list, since this allows each item to be
distinguished, but may also simply be presented as a paragraph. The following are thus both equally valid ways
of encoding the same argument:

<div type="chap" n="6">
<argument>
<p>Kingston — Instructive remarks on early English history
— Instructive observations on carved oak and life in general
— Sad case of Stivvings, junior — Musings on antiquity
— I forget that I am steering — Interesting result
— Hampton Court Maze — Harris as a guide.</p>

</argument>
<p>It was a glorious morning, late spring or early summer, as you
care to take it ...</p>
</div>

Source: [112]

<div type="chap" n="6">
<argument>
<list type="inline">
<item>Kingston</item>

152

4.2.

Elements Common to All Divisions

<item>Instructive remarks on early English history</item>
<item>Instructive observations on carved oak and life in

general</item>
<item>Sad case of Stivvings, junior</item>
<item>Musings on antiquity</item>
<item>I forget that I am steering</item>
<item>Interesting result</item>
<item>Hampton Court Maze</item>
<item>Harris as a guide.</item>

</list>
</argument>
<p>It was a glorious morning, late spring or early summer, as you
care to take it ...</p>
</div>

Source: [|112]]

An epigraph is a quotation from some other work appearing on a title page, or at the start of a division. It
may be encoded using the special-purpose <epigraph> element. Its content will generally be a <q> or <quote>
element, often associated with a bibliographic reference, as in the following example:

<div n="19" type="chap">
<head>Chapter 19</head>
<epigraph>
<cit>
<quote>I pity the man who can travel
from Dan to Beersheba, and say <q>'Tis all
barren;</q> and so is all the world to him
who will not cultivate the fruits it offers.
</quote>
<bibl>Sterne: Sentimental Journey.</bibl>
</cit>
</epigraph>
<p>To say that Deronda was romantic would be to
misrepresent him: but under his calm and somewhat
self-repressed exterior ...</p>
</div>

Source: [|73]]

For discussion of quotations appearing other than as epigraphs refer to section 3.3.3. Quotation.

A postscript is a passage added after the signature of a letter or, less frequently, the main portion of the body
of a book, article, or essay. In English a postscript is often abbreviated as P.S. or PS, and postscripts are often
introduced by labels with one of these abbreviations, as in the following example.

<div type="letter">
<opener>
<dateline>
<placeName>Newport</placeName>
<date when="1761-05-27">May ye 27th 1761</date>
</dateline>
<salute>Gentlemen</salute>
</opener>
<p>Capt Stoddard's Business
<lb/>calling him to Providence, have

153

4. Default Text Structure

<lb/>got him to look at Hopkins brigantine
<lb/>& if can agree to Purchase her, shall
<lb/>be much oblig'd for your further
<lb/>assistance herein, & will acquiesce with
<lb/>whatever you & he shall Contract
<lb/>for — I Thank you for your
<lb/>
<unclear>Line</unclear> respecting the brigantine & Beg
<lb/>leave to Recommend the Bearer
<lb/>to you for your advice & Friendship
<lb/>in this matter</p>
<closer>
<salute>I am your most humble servant</salute>
<signed>Joseph Wanton Jr</signed>
</closer>
<postscript>
<label>P.S.</label>
<p>I have Mollases, Sugar,
<lb/>Coffee & Rum, which
<lb/>will Exchange with you
<lb/>for Candles or Oyl</p>
</postscript>
</div>

Source: [215]

4.2.4 Content of Textual Divisions

Other than elements from the model.divWrapper, model.divTop, or model.divBottom classes, every textual
division (numbered or un-numbered) consists of a sequence of ungrouped macro.component elements (see 1.3.
The TEI Class System). The actual elements available will depend on the modules in use; in all cases, at least the
component-level structural elements defined in the core will be available (paragraphs, lists, dramatic speeches,
verse lines and line groups etc.). If the drama module has been selected, then other component- or phrase- level
items specialised for performance texts (for example, cast lists or camera angles) will be available, as defined
in chapter 7. Performance Texts) will be available. If the dictionary module is in use, then dictionary entries,
related entries, etc. (as defined in chapter 9. Dictionaries) will also be available; if the module for transcribed
speech is in use, then utterances, pauses, vocals, kinesics, etc., as defined in chapter 8.3. Elements Unique to
Spoken Texts will be available; and so on.

Where a text contains low-level elements from more than one module these may appear at any point; there
is no requirement that elements from the same module be kept together.

4.3 Grouped and Floating Texts

The <group> element discussed in 4.3.1. Grouped Texts should be used to represent a collection of
independent texts which is to be regarded as a single unit for processing or other purposes. The
<floatingText> element discussed in 4.3.2. Floating Texts should be used to represent an independent text
which interrupts the text containing it at any point but after which the surrounding text resumes.
<group> contains the body of a composite text, grouping together a sequence of distinct texts (or groups
of such texts) which are regarded as a unit for some purpose, for example the collected works of an
author, a sequence of prose essays, etc.
<floatingText> contains a single text of any kind, whether unitary or composite, which interrupts the text
containing it at any point and after which the surrounding text resumes.

154

4.3. Grouped and Floating Texts

4.3.1 Grouped Texts

Examples of composite texts which should be represented using the <group> element include anthologies and
other collections. The presence of common front matter referring to the whole collection, possibly in addition
to front matter relating to each individual text, is a good indication that a given text might usefully be encoded
in this way; this structure may be found useful in other circumstances too.

For example, the overall structure of a collection of short stories might be encoded as follows:

<TEI>
<teiHeader>
<!-- header information for the whole collection -->
</teiHeader>
<text>
<front>
<docTitle>
<titlePart> The Adventures of Sherlock Holmes
</titlePart>
</docTitle>
<docImprint>First published in <title>The Strand</title>
between July 1891 and December 1892</docImprint>
<!-- any other front matter specific to this collection -->

</front>
<group>
<text>
<front>
<head rend="italic">Adventures of Sherlock
Holmes</head>
<docTitle>

<titlePart>Adventure I. —</titlePart>
<titlePart>A Scandal in Bohemia</titlePart>
</docTitle>
<byline>By A. Conan Doyle.</byline>
</front>
<body>
<p>To Sherlock Holmes she is always
<emph>the</emph> woman. ... </p>
<!-- remainder of A Scandal in Bohemia here -->
</body>
</text>
<text>
<front>
<head rend="italic">Adventures of Sherlock Holmes</head>
<docTitle>
<titlePart>Adventure II. —</titlePart>
<titlePart>The Red-Headed League</titlePart>
</docTitle>
<byline>By A. Conan Doyle.</byline>
</front>
<body>
<!-- text of The Red Headed League here -->
</body>
</text>
<text>
<front>
<head rend="italic">Adventures of Sherlock Holmes</head>
<docTitle>
<titlePart>Adventure XII. —</titlePart>

155

4. Default Text Structure

<titlePart>The Adventure of the Copper Beeches</titlePart>
</docTitle>
<byline>By A. Conan Doyle.</byline>
</front>
<body>
<p>
<q>To the man who loves art for its
own sake,</q> remarked Sherlock Holmes ...

<!-- remainder of The Copper Beeches here -->

she is now the head of a private school
at Walsall, where I believe that she has
met with considerable success.</p>
</body>
</text>
<!-- end of The Copper Beeches -->
</group>
</text>
<!-- end of the Adventures of Sherlock Holmes -->
</TEI>

Source: [/66]]

A text which is a member of a group may itself contain groups. This is quite common in collections of verse,
but may happen in any kind of text. As an example, consider the overall structure of a typical collection, such
as the Muses Library edition of Crashaw's poetry. Following a critical introduction and table of contents, this
work contains the following major sections:

o Steps to the Temple (a collection of verse first published in 1648)

o Carmen deo Nostro (a second collection, published in 1652)

o The Delights of the Muses (a third collection, published in 1648)

o Posthumous Poems, 1 (a collection of fragments all taken from a single manuscript)

o Posthumous Poems, 11 (a further collection of fragments, taken from a different manuscript)

Each of the three collections published in Crashaw's lifetime has a reasonable claim to be considered as a
text in its own right, and may therefore be encoded as such. It is rather more arbitrary as to whether the two
posthumous collections should be treated as two groups, following the practice of the Muses Library edition. An
encoder might elect to combine the two into a single group or simply to treat each fragment as an ungrouped
unitary text.

The Muses Library edition reprints the whole of each of the three original collections, including their original
front matter (title pages, dedications etc.). These should be encoded using the <front> element and its
constituents (on which see further section 4.5. Front Matter), while the body of each collection should be
encoded as a single <group> element. Each individual poem within the collections should be encoded as
a distinct <text> element. The beginning of the whole collection would thus appear as follows (for further
discussion of the use of the elements <div> and <lg> for textual subdivision of verse, see section 3.12.1. Core
Tags for Verse and chapter 6. Verse):

<text>
<front>
<titlePage>

156

4.3

. Grouped and Floating Texts

<docTitle>
<titlePart>The poems of Richard Crashaw</titlePart>
</docTitle>
<byline>Edited by J.R. Tutin</byline>
</titlePage>

<div type="preface">
<head>Editor's Note</head>
<p>A few words are necessary ... </p>
</div>
</front>
<group>
<text>
<front>
<titlePage>
<docTitle>
<titlePart>Steps to the Temple, Sacred Poems</titlePart>
</docTitle>
</titlePage>
<div type="address">
<head>The Preface to the Reader</head>
<p>Learned Reader, The Author's friend will not usurp much
upon thy eye ... </p>
</div>
</front>
<group>
<text>
<front>
<docTitle>
<titlePart>Sospetto D'Herode</titlePart>
</docTitle>
</front>
<body>
<divl type="book" n="Herod I">
<head>Libro Primo</head>
<epigraph>
<l>Casting the times with their strong signs</1>
</epigraph>
<lg n="I.1" type="stanza">
<l>Muse! now the servant of soft loves no more</1>
<l>Hate is thy theme and Herod whose unblest</1>
<l>Hand (0, what dares not jealous greatness?) tore</1>
<1>A thousand sweet babes from their mothers' breast,</1>
<1>The blooms of martyrdom ...</1>
</lg>
</divl>
</body>
</text>
<text>
<front>
<docTitle>
<titlePart>The Tear</titlePart>
</docTitle>
</front>
<body>
<lg n="I">
<l>What bright soft thing is this</1>
<1>Sweet Mary, thy fair eyes' expense?</1>

157

4. Default Text Structure

<!--

<!--

<!--

<!--

</--

</1g>
</body>
</text>
remaining poems
</group>
<back>

- back matter for

</back>
</text>
<text>
start of Carmen
<front/>
<group>
<text/>
<text/>

</group>
</text>
<text>

<group>
<text/>
<text/>
more texts here
</group>
</text>

</group>
<back>

<!--

</back>
</text>

The <group> element may be used in this way to encode any kind of collection of which the constituents
are regarded by the encoder as texts in their own right. Examples include anthologies or collections of verse
or prose by multiple authors, florilegia, or commonplace books, journals, day books, etc. As a fairly typical
example, we consider The Norton Book of Travel, an anthology edited by Paul Fussell and published in 1987 by
W. W. Norton. This work comprises the following major sections:

more texts here -

of the Steps to the Temple appear here, each

the Steps to the Temple -->

deo Nostro -->

start of The Delights of the Muses -->

-->

back matter for the whole collection -->

tagged as a distinct text element -->

Source:

1. Front matter (title page, acknowledgments, introductory essay)

2. The Beginnings

3

TN

5

6

. The Eighteenth Century and the Grand Tour

. The Heyday

. Touristic Tendencies

. Post Tourism

7. Back matter (permissions list, index)

Each titled section listed above comprises a group of extracts or complete texts from writers of a given historical
period, preceded by an introductory essay. For example, the second group listed above contains, inter alia, the

following:

158

4.3. Grouped and Floating Texts

5.

6.

. Prefatory essay

Five letters by Lady Mary Wortley Montagu

An extract from Swift's Gullivers Travels

. Two poems by Alexander Pope

Two extracts from Boswell's Journal

A poem by William Blake

Each group of writings by a single author is preceded by a brief biographical notice. Some of the extracts are
quite lengthy, containing several chapters or other divisions; others are quite short. As the above list indicates,
the texts included range across all kinds of material: verse, prose, journals and letters.

The easiest way of encoding such an anthology is to treat each individual extract as a text in its own right. A
sequence of texts by a single author, together with the biographical note preceding it, can then be treated as a
single <group> element within the larger <group> formed by the section. The sequence of single or composite
texts making up a single section of the work is likewise treated, together with its prefatory essay, as a single
<group> within the work. Schematically:

<text>

<!--

the whole anthology -->

<front>

<!-- title page, acknowledgments, introductory essay -->

</front>
<group>

<!--

body of anthology starts here -->

<group>

<!--

<head>The Beginnings</head>
sequence of texts or groups -->

</group>
<group>

<!--

<I--

<I--

</--

</--

</--

<I-- ...

SIEE

</--

<l--

The Eighteenth Century and the Grand Tour -->

<text>
prefatory essay by editor -->
</text>
<group>

Section on Lady Mary Wortley Montagu starts -->

<text>

biographical notice by editor -->
</text>
<text>

first letter -->
</text>
<text>

second letter -->
</text>

-—>

</group>

end of Montagu section -->

<text>

single text by Jonathan Swift starts -->
<front>

biographical notice by editor -->
</front>

159

4. Default Text Structure

<body/>
</text>
<!-- end of Swift section -->
<group>
<!-- Section on Alexander Pope starts -->
<text>
<!-- biographical notice by editor -->
</text>
<text>
<!-- first poem -->
</text>
<text>
<!-- second poem -->
</text>
</group>
<!-- end of Pope section -->
<l-- ... -->
</group>
<!-- end of 18th century section -->
<group>
<head>The Heyday</head>
<!-- texts and subgroups -->
</group>
<l-- ... -->
</group>
<!-- end of the anthology proper -->
<back>
<!-- back matter for anthology -->
</back>
</text>

Source: [|81]]

Note that the editor's introductory essays on each author may be treated as texts in their own right (as the
essays on Lady Mary Wortley Montagu and Alexander Pope have been treated above), or as front matter to the
embedded text, as the essay on Swift has been. The treatment in the example is intentionally inconsistent, to
allow comparison of the two approaches. Consistency can be imposed either by treating the Swift section as a
<group> containing one text by Swift and one by the editor, or by treating the Montagu and Pope sections as

<text> elements containing the editor's essays as front matter. Marked in the second way, the Pope section of
the book would look like this:

<text>
<!-- Section on Alexander Pope starts -->
<front>
<!-- biographical notice by editor -->
</front>
<group>
<text>
<!-- first poem -->
</text>
<text>
<!-- second poem -->
</text>
</group>
</text>
<!-- end of Pope section-->

160

4.3. Grouped and Floating Texts

The essays on “The Eighteenth Century and the Grand Tour’ and other larger sections could also be tagged as
‘front’ matter in the same way, by treating the larger sections as <text> elements rather than <group> elements.

Where, as in this case, an anthology contains different kinds of text (for example, mixtures of prose and
drama, or transcribed speech and dictionary entries, or letters and verse), the elements to be encoded will of
course be drawn from more than one module. The elements provided by the core module described in chapter
3. Elements Available in All TEI Documents should however prove adequate for most simple purposes, where
prose, drama, and verse are combined in a single collection.

For anthologies of short extracts such as commonplace books, it may often be preferable to regard each
extract not as a text in its own right but simply as a quotation or <cit> element. The following component-level
elements may be used to encode quotations of this kind:

<cit> (cited quotation) contains a quotation from some other document, together with a bibliographic
reference to its source. In a dictionary it may contain an example text with at least one occurrence of
the word form, used in the sense being described, or a translation of the headword, or an example.

<quote> (quotation) contains a phrase or passage attributed by the narrator or author to some agency
external to the text.

For example, the chapter of ‘extracts’ which appears in the front matter of Melville's Moby Dick might be
encoded as follows:

<div n="2" type="chap">
<head>Extracts</head>
<head>(Supplied by a sub-sub-Librarian)</head>
<p>It will be seen that this mere painstaking burrower and
grubworm of a poor devil of a Sub-Sub appears to have gone
through the long Vaticans and street-stalls of the earth,
picking up whatever random allusions to whales he could
anyways find ...
Here ye strike but splintered hearts together - there,
ye shall strike unsplinterable glasses!</p>
<p>
<cit>
<quote>And God created great whales.</quote>
<bibl1>Genesis</bibl>
</cit>
<cit>
<quote>
<l>Leviathan maketh a path to shine after him;</1>
<1>0ne would think the deep to be hoary.</1>
</quote>
<bibl>Job</bibl>
</cit>
<cit>
<quote>By art is created that great Leviathan,
called a Commonwealth or State — (in Latin,
<mentioned xml:lang="la">civitas</mentioned>), which
is but an artificial man.</quote>
<bibl>0pening sentence of Hobbes's Leviathan</bibl>
</cit>
</p>
</div>

Source: [|149]

For more information on the use of the <quote> and <bibl> elements, see sections 3.3.3. Quotation and 3.11.
Bibliographic Citations and References respectively.

161

4. Default Text Structure

4.3.2 Floating Texts

An important characteristic of the unitary or composite text structures discussed so far is that they can be
regarded as forming what is mathematically known as a tesselation covering the whole of the available text (or
text division) at each hierarchic level. Just as an XML document has a single root element containing a single
tree, each node of which forms a properly nested sub-tree, so it seems natural to think of the internal structure
of a text as decomposable hierarchically into subparts, each of which is a properly nested subtree. While this is
undoubtedly true of a large number of documents, it is not true of all. In particular, it is not true of texts which
are only partly tesselated at a given level. For example, if a text A is contained by text B in such a way that part
of B precedes A and part follows it, we cannot tesselate the whole of B. In such a case, we say that text A is a
‘floating’ text.

The <floatingText> element is a member of the model.divPart class, and can thus appear within any division
level element in the same way as a paragraph. For example, texts such as the Decameron or the Arabian
Nights might be regarded as containing many floating texts embedded within another single text, the framing
narrative, rather than as groups of discrete texts in which the fragments of framing narrative are regarded as
front or back matter.

As an example, we consider an 18th century text The Lining to the Patch-Work Screen, by Jane Barker (1726).
This lengthy narrative contains nearly a hundred distinct ‘tales’ embedded (as the title suggests) in a single
patchwork. The work begins by introducing the central character, Galecia, but within a few pages launches
into a distinct narrative, the story of Captain Manly:

<p>Galecia one Evening setting alone in her Chamber by a clear Fire,
and a clean Hearth ... reflected on the Providence of our
All-wise and Gracious Creator.... </p>
<p>She was thus ruminating, when a Gentleman enter'd the Room, the
Door being a jar... calling for a Candle, she beg'd a thousand
Pardons, engaged him to sit down, and let her know, what had so long
conceal'd him from her Correspondence.
</p>
<pb n="5"/>
<floatingText>
<body>
<head>The Story of <hi>Captain Manly</hi>
</head>
<p>Dear Galecia, said he, though you partly know the loose, or rather
lewd Life that I led in my Youth; yet I can't forbear relating part of
it to you by way of Abhorrence...

<!-- Captain Manly's story here -->
I had lost and spent all I had in the World; in which I verified the
0ld Proverb, That a Rolling Stone never gathers Moss,
</p>
</body>
</floatingText>
<pb n="37"/>

Source: []11f]
Following the conclusion of Captain Manly's tale, we are returned to Galecia, and almost immediately after

that into two further stories. However, the Galecia narrative returns between each of the texts, which is why
we choose to represent them as <floatingText>s:

162

4.3

. Grouped and Floating Texts

<p>The Gentleman having finish'd his Story, Galecia waited on him to
the Stairs-head; and at her return, casting her Eyes on the Table, she
saw lying there an old dirty rumpled Book, and found in it the
following story: </p>
<floatingText>
<body>
<p> IN the time of the Holy War when
Christians from all parts went into the Holy Land to oppose the Turks;
Amongst these there was a certain English Knight...</p>
<!-- rest of story here -->
<p>The King graciously pardoned the Knight; Richard was kindly receiv'd
into his Convent, and all things went on in good order: But from hence
came the Proverb, We must not strike <hi>Robert</hi> for
<hi>Richard.</hi>
</p>
</body>
</floatingText>
<pb n="43"/>
<p>By this time Galecia's Maid brought up her Supper; after which she
cast her Eyes again on the foresaid little Book, where she found the
following Story, which she read through before she went to bed.
</p>
<floatingText>
<body>
<head>The Cause of the Moors Overrunning
<hi>Spain</hi>
</head>
<p>King —— of Spain at his Death, committed the Government of his
Kingdom to his Brother Don —— till his little Son should come of
Age ...</p>
<p>Thus the little Story ended, without telling what Misery
befel the King and Kingdom, by the Moors, who over ran the Country for
many Years after. To which, we may well apply the Proverb,
<quote>
<l>Who drives the Devil's Stages,</1>
<l>Deserves the Devil's Wages</1>
</quote>
</p>
</body>
</floatingText>
<p>The reading this Trifle of a Story detained Galecia from her Rest
beyond her usual Hour; for she slept so sound the next Morning, that
she did not rise, till a Lady's Footman came to tell her, that his
Lady and another or two were coming to breakfast with her...
</p>

Source: [|11]]

In other multi-narrative texts, the individual nested tales may have greater significance than the framing
narratives, and it may therefore be preferable to treat the fragments of framing narrative as front or back matter
associated with each nested tale. This is commonly done, for example, in texts such as Chaucer's Canterbury
Tales, where each tale is typically presented with front matter in which the teller of the tale is introduced, and

back matter in which the pilgrims comment on it.
The <floatingText> element should only be used for complete texts which

form a part of the text being

encoded. Where a character in one narrative quotes from some other text or narrative, fully or in part, the

<quote> element discussed in 3.3.3. Quotation should be used instead.

163

4. Default Text Structure

4.4

4.5

Virtual Divisions
Where the whole of a division can be automatically generated, for example because it is derived from another
part of this or another document, an encoder may prefer not to represent it explicitly but instead simply mark
its location by means of a processing instruction, or by using the special purpose <divGen> element:

<divGen> (automatically generated text division) indicates the location at which a textual division

generated automatically by a text-processing application is to appear.

This element is made available by the model.divGenLike class of which it is the sole element. The <divGen>
element is a member of the att.typed class, from which it inherits the type and subtype attributes. It may appear
wherever a <div> or <divl> (<div2>, etc.) element may appear.

For example, if the table of contents (toc) for a given work is simply derived by copying the first <head>
element from each <div> element in a text, it might be more easily encoded as follows:

<divGen type="toc"/>

Similarly, in a digital edition combining a transcribed version of some text with a translated version of it, it
may be desired to represent the transcript, the translation, and an aligned version of the two as three distinct
divisions. This could be achieved by an encoding like the following:

<div>

<!-- transcript here-->
</div>

<div>

<!-- translation here -->
</div>

<divGen type="alignment"/>

The processing to be carried out when a <divGen> element is rendered will be determined by the application
program or stylesheet in use: the function of the TEI markup is simply to identify the location at which the
virtual division is to be generated, and also to provide some information about the kind of division to be
generated. As such it may be regarded as a special kind of processing instruction, and could equally well be
represented by one.

Front Matter

By front matter we mean distinct sections of a text (usually, but not necessarily, a printed one), prefixed to it
by way of introduction or identification as a part of its production. Features such as title pages or prefaces are
clear examples; a less definite case might be the prologue attached to a play. The front matter of an encoded
text should not be confused with the TEI header described in chapter 2. The TEI Header, which serves as a kind
of front matter for the computer file itself, not the text it encodes.

An encoder may choose simply to ignore the front matter in a text, if the original presentation of the work
is of no interest, or for other reasons; alternatively some or all components of the front matter may be thought
worth including with the text as components of the <front> element.’ With the exception of the title page,
(on which see section 4.6. Title Pages), front matter should be encoded using the same elements as the rest of
a text. As with the divisions of the text body, no other specific tags are proposed here for the various kinds of
subdivision which may appear within front matter: instead either numbered or un-numbered <div> elements
may be used. The following suggested values? for the type attribute may be used to distinguish various kinds
of division characteristic of front matter:

!'This decision should be recorded in the <samplingDecl> element of the header.
2 As with all lists of ‘suggested values’ for attributes, it is recommended that software written to handle TEI-conformant texts be prepared to recognize
and handle these values when they occur, without limiting the user to the values in this list.

164

4.5. Front Matter

preface A foreword or preface addressed to the reader in which the author or publisher explains the content,
purpose, or origin of the text.

ack A formal declaration of acknowledgment by the author in which persons and institutions are thanked for
their part in the creation of a text.

dedication A formal offering or dedication of a text to one or more persons or institutions by the author.
abstract A summary of the content of a text as continuous prose.

contents A table of contents, specifying the structure of a work and listing its constituents. The <list> element
should be used to mark its structure.

frontispiece A pictorial frontispiece, possibly including some text.

The following extended example demonstrates how various parts of the front matter of a text may be encoded.
The front part begins with a title page, which is presented in section 4.6. Title Pages below. This is followed by
a dedication and a preface, each of which is encoded as a distinct <div>:

<div type="dedication">
<p>To my parents, Ida and Max Fish</p>
</div>
<div type="preface">
<head>Preface</head>
<p>The answer this book gives to its title question is <qg>there is
and there isn't</q>.</p>
<p>Chapters 1-12 have been previously published in the
following journals and collections:
<list>
<item>chapters 1 and 3 in <title>New literary History</title>
</item>
<item>chapter 10 in <title>Boundary II</title> (1980)</item>
</list>.
I am grateful for permission to reprint.</p>
<signed>S.F.</signed>
</div>

Source: [|77]]

The front matter concludes with another <div> element, shown in the next example, this time containing a
table of contents, which contains a <list> element (as described in section 3.7. Lists). Note the use of the <ptr>
element to provide page-references: the implication here is that the target identifiers supplied (fishl, fish2,
etc.) will correspond with identifiers used for the <div> elements containing chapters of the text itself. (For
the <ptr> element, see 3.6. Simple Links and Cross-References.)

<div type="contents">
<head>Contents</head>
<list>
<item>Introduction, or How I stopped Worrying and Learned to Love
Interpretation <ptr target="#fishl"/>
</item>
<item>
<list>
<head>Part One: Literature in the Reader</head>

165

4. Default Text Structure

<item n="1">Literature in the Reader: Affective Stylistics
<ptr target="#fish2"/>
</item>
<item n="2">What is Stylistics and Why Are They Saying Such
Terrible Things About It? <ptr target="#fish3"/>
</item>
</list>
</item>
</list>
</div>
<div xml:id="fishl">
<head>Introduction</head>
<l-- -->
</div>
<div xml:id="fish2">
<head>Literature in the Reader</head>
<l-- -->
</div>
<div xml:id="fish3">
<head>What is stylistics?</head>
<l-- ,... -->

</div>

Source: [|77]]

Alternatively, the pointers in the index might link to the page breaks at which a chapter begins, assuming that
these have been included in the markup:

<!-- --><item n="1">Literature in the Reader: Affective Stylistics
<ref target="#fish-p24">24</ref>

</item>

<l-- ... -->

<div type="chapter">
<head>Literature in the Reader</head>
<pb xml:id="fish-p24"/>

<l-- -->
</div>
<l-- -->

The following example uses numbered divisions to mark up the front matter of a medieval text. Note that
in this case no title page in the modern sense occurs; the title is simply given as a heading at the start of the
front matter. Note also the use of the type attribute on the <div> elements to indicate document elements
comparatively unusual in modern books such as the initial prayer:

<front>
<divl type="incipit">
<p>Here bygynnip a book of contemplacyon, pe whiche
is clepyd <title>pE CLOWDE OF VNKNOWYNG</title>,
in pe whiche a soule is onyd wip GOD.</p>
</divl>
<divl type="prayer">
<head>Here biginnep pe preyer on pe prologe.</head>
<p>God, unto whom alle hertes ben open, & unto whome alle wille
spekip, & unto whom no priue ping is hid: I beseche

166

4.6. Title Pages

4.6

bee so for to clense pe entent of myn hert wip pe
unspekable 3ift of pi grace, pat I may parfiteliche
loue pee & worpilich preise pee. Amen.</p>
</divl>
<divl type="preface">
<head>Here biginnep pe prolog.</head>
<p>In pe name of pe Fader & of pe Sone &
of pe Holy Goost.</p>
<p>I charge pee & I beseeche pee, wip as moche
power & vertewe as pe bonde of charite is sufficient
to suffre, what-so-euer pou be pat pis book schalt
haue in possession ...</p>
</divl>
<divl type="contents">
<head>Here biginnep a table of pe chapitres.</head>
<list>
<label>pe first chapitre </label>
<item>0f foure degrees of Cristen mens leuing; & of pe
cours of his cleping pat pis book was maad vnto.</item>
<label>pe secound chapitre</label>
<item>A schort stering to meeknes & to pe werk of pis
book</item>
<label>pe fiue and seuenti chapitre</label>
<item>0f somme certein tokenes bi pe whiche a man may proue
wheper he be clepid of God to worche in pis werk.</item>
</list>
<trailer>& here eendep pe table of pe chapitres.</trailer>
</divl>
</front>

Source: [41]]

If, however, the table of contents can be automatically generated from the remainder of the text, it may
be preferable simply to mark its presence, either by means of an empty <divGen> element or by using an
appropriate processing instruction.

Title Pages

Detailed analysis of the title page and other preliminaries of older printed books and manuscripts is of major
importance in descriptive bibliography and the cataloguing of printed books; such analysis may require a rather
more detailed module than that proposed here. The following elements are suggested as a means of encoding
the major features of most title pages:

<titlePage> (title page) contains the title page of a text, appearing within the front or back matter.

<docTitle> (document title) contains the title of a document, including all its constituents, as given on a

title page.
<titlePart> contains a subsection or division of the title of a work, as indicated on a title page.

@type specifies the role of this subdivision of the title.

<argument> A formal list or prose description of the topics addressed by a subdivision of a text.

<byline> contains the primary statement of responsibility given for a work on its title page or at the head
or end of the work.

<docAuthor> (document author) contains the name of the author of the document, as given on the title
page (often but not always contained in a byline).

167

4. Default Text Structure

<epigraph> contains a quotation, anonymous or attributed, appearing at the start of a section or chapter,
or on a title page.

<imprimatur> contains a formal statement authorizing the publication of a work, sometimes required to
appear on a title page or its verso.

<docEdition> (document edition) contains an edition statement as presented on a title page of a document.

<docImprint> (document imprint) contains the imprint statement (place and date of publication,
publisher name), as given (usually) at the foot of a title page.

<docDate> (document date) contains the date of a document, as given (usually) on a title page.
<graphic/> indicates the location of an inline graphic, illustration, or figure.

Together with the <figure> element described in chapter 14. Tables, Formule, and Graphics, these elements
constitute the model.titlepagePart class. Any number of elements from this class can appear grouped together
within a <titlePage> element. The <figure> element is included so as to enable encoders to record the presence
of complex non-textual material on a title page. For simple cases such as printers' ornaments or illustrations
the <graphic> element discussed in section |3.9. Graphics and other non-textual components should be adequate.

The elements listed above, together with the <head> element, also constitute the class model.pLike.front. The
elements in this class can appear within a minimal <front> element without any need to group them together
and encode a complete title page.

Encoders wishing to add new elements to either class may do so using the methods described in section 23.2.
Personalization and Customization. Two examples of the use of these elements follow. First, the title page of the
work discussed earlier in this section:

<front>
<titlePage>
<docTitle>
<titlePart type="main">Is There a Text in This Class?</titlePart>
<titlePart type="sub">The Authority of Interpretive Communities</titlePart>
</docTitle>
<docAuthor>Stanley Fish</docAuthor>
<docImprint>
<publisher>Harvard University Press</publisher>
<pubPlace>Cambridge, Massachusetts</pubPlace>
<pubPlace>London, England</pubPlace>
</docImprint>
</titlePage>
</front>

Source: [77]]

Second, a characteristically verbose 17th century example. Note the use of the <lb> tag to mark the line
breaks of the original where necessary:

<titlePage>
<docTitle>
<titlePart type="main">THE
<lb/>Pilgrim's Progress
<lb/>FROM
<lb/>THIS WORLD,
<lb/>TO
<lb/>That which is to come:</titlePart>
<titlePart type="sub">Delivered under the Similitude of a
<1lb/>DREAM</titlePart>

168

4.7. Back Matter

4.7

<titlePart type="desc">Wherein is Discovered,
<lb/>The manner of his setting out,
<lb/>His Dangerous Journey; And safe
<lb/>Arrival at the Desired Countrey.</titlePart>
</docTitle>
<epigraph>
<cit>
<quote>I have used Similitudes,</quote>
<bibl>Hos. 12.10</bibl>
</cit>
</epigraph>
<byline>By <docAuthor>John Bunyan</docAuthor>.</byline>
<imprimatur>Licensed and Entred according to Order.</imprimatur>
<docImprint>
<pubPlace>LONDON, </pubPlace>
Printed for <name>Nath. Ponder</name>
<lb/>at the <name>Peacock</name> in the <name>Poultrey</name>
<lb/>near <name>Cornhil</name>, <docDate>1678</docDate>.
</docImprint>
</titlePage>

Source: [125]]

Where, as here, it is considered important to encode salient features of the way a title page was originally
rendered, the techniques exemplified in 2.3.4. The Tugging Declaration may also be useful.

Where title pages are encoded, their physical rendition is often of considerable importance. One approach to
this requirement would be to use the <seg> tag, described in chapter 16. Linking, Segmentation, and Alignment,
to segment the typographic content of each part of the title page, and then use the global rend attribute to
specify its rendition. Another would be to use a module specialized for the description of typographic entities
such as pages, lines, rules, etc., bearing special-purpose attributes to describe line-height, leading, degree of
kerning, font, etc. Further discussion of these problems is provided in chapter 11. Representation of Primary
Sources.

Back Matter

Conventions vary as to which elements are grouped as back matter and which as front. For example, some
books place the table of contents at the front, and others at the back. Even title pages may appear at the back
of a book as well as at the front. The content model for <back> and <front> elements are therefore identical.

The following suggested values may be used for the type attribute on all division elements, in order to
distinguish various kinds of division characteristic of back matter:

appendix An ancillary self-contained section of a work, often providing additional but in some sense extra-
canonical text.

glossary A list of terms associated with definition texts (‘glosses’): this should be encoded as a <list
type="gloss"> (see section 3.7. Lists).

notes A section in which textual or other kinds of notes are gathered together.

bibliogr A list of bibliographic citations: this should be encoded as a <listBibl> (see section 3.11. Bibliographic
Citations and References).

index Any form of index to the work.

colophon A statement appearing at the end of a book describing the conditions of its physical production.

169

4. Default Text Structure

No additional elements are proposed for the encoding of back matter at present. Some characteristic
examples follow; first, an index (for the case in which a printed index is of sufficient interest to merit
transcription):

<back>
<div type="index">
<head>Index</head>
<list type="index">
<item>Actors, public, paid for the contempt attending
their profession, <ref>263</ref>
</item>
<item>Africa, cause assigned for the barbarous state of
the interior parts of that continent, <ref>125</ref>
</item>
<item>Agriculture
<list type="indexentry">
<item>ancient policy of Europe unfavourable to, <ref>371</ref>
</item>
<item>artificers necessary to carry it on, <ref>481</ref>
</item>
<item>cattle and tillage mutually improve each other, <ref>325</ref>
</item>
<item>wealth arising from more solid than that which proceeds
from commerce <ref>520</ref>
</item>
</list>
</item>
<item>Alehouses, not the efficient cause of drunkenness, <ref>46l</ref>
</item>
</list>
</div>
</back>

Source: [{193]

Note that if the page breaks in the original source have also been explicitly encoded, and given identifiers, the
references to them in the above index can more usefully be recorded as links. For example, assuming that the
encoding of page 461 of the original source starts like this:

<pb xml:id="P461"/>

then the last item above might be encoded more usefully in either of the following forms:

<item>Alehouses, not

the efficient cause of drunkenness, <ref target="#P461">461</ref>

</item>

<item>Alehouses, not the efficient cause of drunkenness, <ptr target="#P461"/>
</item>

Next, a back-matter division in epistolary form:

<back>
<div type="letter">

170

4.8. Module for Default Text Structure

<head>A letter written to his wife, founde with this booke
after his death.</head>
<p>The remembrance of the many wrongs offred thee, and thy
unreproued vertues, adde greater sorrow to my miserable state,
than I can utter or thou conceiue.
yet trust I in the world to come to find mercie, by the
merites of my Saiuour to whom I commend thee, and commit
my soule.</p>
<signed>Thy repentant husband for his disloyaltie,
<name>Robert Greene.</name>
</signed>
<epigraph xml:lang="1la">
<p>Faelicem fuisse infaustum</p>
</epigraph>
<trailer>FINIS</trailer>
</div>
</back>

Source: [97]]

And finally, a list of corrigenda and addenda with pseudo-epistolary features:

<back>
<div type="corrigenda">
<head>Addenda</head>

<salute xml:lang="1la">M. Scriblerus Lectori</salute>

<p>0Once more, gentle reader I appeal unto thee, from the shameful
ignorance of the Editor, by whom Our own Specimen of

<name>Virgil</name> hath been mangled in such miserable manner, that
scarce without tears can we behold it. At the very entrance, Instead
of <q xml:lang="gr">mnpoAeyopyeva</q>, lo!

<q xml:lang="gr">mnpoAeywuevoa</q> with an Omega!
and in the same line <q xml:lang="la">consulas</q> with a circumflex!
In the next page thou findest <q xml:lang="la">leviter perlabere</q>,
which his ignorance took to be the infinitive mood of

<q xml:lang="la">perlabor</q> but ought to be

<q xml:lang="la">perlabi</q> ... Wipe away all these
monsters, Reader, with thy quill.</p>
</div>
</back>

Source: [169]]

4.8 Module for Default Text Structure
The module described by the present chapter has the following components:

Module textstructure: Default text structure

o Elements defined: TEI argument back body byline closer dateline div divl div2| div3| div4 div5 divé
div7 docAuthor docDate docEdition docImprint docTitle epigraph floatingText front group imprimatur
opener postscript salute signed text titlePage titlePart trailer

The selection and combination of modules to form a TEI schema is described in 1.2. Defining a TEI Schema

171

4. Default Text Structure

172

5.1

Chapter 5

Representation of Non-standard Characters
and Glyphs

Despite the availability of Unicode, text encoders still sometimes find that the published repertoire of available
characters is inadequate to their needs. This is particularly the case when dealing with ancient languages,
for which encoding standards do not yet exist, or where an encoder wishes to represent variant forms of a
character or glyphs. The module defined by this chapter provides a mechanism to satisfy that need, while
retaining compatibility with standards.

Is Your Journey Really Necessary?

When encoders encounter some graphical unit in a document which is to be represented electronically, the first
issue to be resolved should be ‘Is this really a different character?” To determine whether a particular graphical
unit is a character or not, see vi.2.2 Terminology and key concepts.

If the unit is indeed determined to be a character, the next question should be ‘Has this character been
encoded already?’” In order to determine whether a character has been encoded, encoders should follow the
following steps:

1. Checkthe Unicode websiteathttp://www.unicode.org, in particular the page "Where is my Character?”,
and the associated character code charts. Alternatively, users can check the latest published version of The
Unicode Standard (Unicode Consortium (2006)), though the web site is often more up to date than the
printed version, and should be checked for preference.

The pictures (‘glyphs’) in the Unicode code charts are only meant to be representative, not definitive. If a
specific form of an already encoded character is required for a project, refer to the guidelines contained
below under Annotating Characters. Remember that your encoded document may be rendered on a
system which has different fonts from yours: if the specific form of a character is important to you, then
you should document it.

2. Check the Proposed New Characters web page (http://unicode.org/alloc/Pipeline.html) to see
whether the character is in line for approval.

3. Ask on the Unicode email list (http://www.unicode.org/consortium/distlist.html) to see whether
a proposal is pending, or to determine whether this character is considered eligible for addition to the
Unicode Standard.

Since there are now close to 100,000 characters in Unicode, chances are good that what you need is already
there, but it might not be easy to find, since it might have a different name in Unicode. Look again, this

173

http://www.unicode.org
http://unicode.org/standard/where/
http://unicode.org/alloc/Pipeline.html
http://www.unicode.org/consortium/distlist.html

5. Representation of Non-standard Characters and Glyphs

5.2

time at other sites, for example http://www.eki.ee/letter, which also provide searches based on scripts and
languages. Take care, however, that all the properties of what seems to be a relevant character are consistent
with those of the character you are looking for. For example, if your character is definitely a digit, but the
properties of the best match you can find for it say that it is a letter, you may have a character not yet defined
in Unicode.

In general, it is advisable to avoid Unicode characters generally described as presentation forms.! However,
if the character you are looking for is being used in a notation (rather than as part of the orthography of a
language) then it is quite acceptable to select characters from the Mathematical Operators block, provided that
they have the appropriate properties (i.e. So: Symbol, Other; or Sm: Symbol, Math).

An encoded character may be precomposed or it may be formed from base characters and combining
diacritical marks. Either will suffice for a character to be "found" as an encoded character.

If there are several possible Unicode characters to choose amongst, it is good practice to consult other
colleagues and practitioners to see whether a consensus has emerged in favour of one or other of them.

If, however, no suitable form of your character seems to exist, the next question will be: ‘Does the graphical
unit in question represent a variant form of a known character, or does it represent a completely unencoded
character?” If the character is determined to be missing from the Unicode Standard, it would be helpful to
submit the new character for inclusion (see http://unicode.org/pending/proposals.html).

These guidelines will help you proceed once you have identified a given graphical unit as either a variant or
an unencoded character. Determining this will require knowledge of the contents of the document that you
have. The first case will be called annotation of a character, while the second case will be called adding of a
new character. How to handle graphical units that represent variants will be discussed below (5.3. Annotating
Characters) while the problem of representing new characters will be dealt with in section 5.4. Adding New
Characters.

While there is some overlap between these requirements, distinct specialized markup constructs have been
created for each of these cases as explained in section 5.2. Markup Constructs for Representation of Characters
and Glyphs below. The following section will then proceed to discuss how to apply them to the problems at
hand, discussing annotation of existing characters in section 5.3. Annotating Characters and finally creation of
new ones in 5.4. Adding New Characters.

Markup Constructs for Representation of Characters and Glyphs

An XML document can, in principle, contain any defined Unicode character. The standard allows these
characters to be represented either directly, using an appropriate encoding (UTF-8 by default), or indirectly
by means of numeric character references (NCR), such as Ä (A-umlaut). The encoder can also restrict
the range of characters which are represented directly in a document (or part of it) by adding a suitable encoding
declaration. For example, if a document begins with the declaration <?xml encoding="1is0-8859-1"?> any
Unicode characters which are not in the ISO-8859-1 character set must be represented by NCRs.

The gaiji module defined by this chapter adds a further way of representing specific characters and glyphsin a
document. This allows the encoder to distinguish characters and glyphs which Unicode regards as identical, to
add new nonstandard characters or glyphs, and to represent Unicode characters not available in the document
encoding by an alternative means.

The mechanism provided here consists functionally of two parts:

1. an element <g>, which serves as a proxy for new characters or glyphs

2. elements <char> and <glyph>, providing information about such characters or glyphs; these elements are
stored in the <charDecl> element in the header.

ISpecifically, characters in the Unicode blocks Alphabetic Presentation Forms, Arabic Presentation Forms-A, Arabic Presentation Forms-B,
Letterlike Symbols, and Number Forms.

174

http://www.eki.ee/letter
http://unicode.org/pending/proposals.html

5.2. Markup Constructs for Representation of Characters and Glyphs

When the gaiji module is included in a schema, the <charDecl> element is added to the model.encodingPart
class, and the <g> element is added to the phrase class. These elements and their components are documented
in the rest of this section.

The Unicode standard defines properties for all the characters it defines in the Unicode Character Database,
knowledge of which is usually built into text processing systems. If the character represented by the <g> element
does not exist in Unicode at all, its properties are not available. If the character represented is an existing
Unicode character, but is not available in the document character set recognized by a given text processing
system, it may also be convenient to have access to its properties in the same way. The <char> element makes
it possible to store properties for use by such applications in a standard way.

The list of attributes (properties) for characters is modelled on those in the Unicode Character Database,
which distinguishes normative and informative character properties. Additional, non-Unicode, properties may
also be supplied. Since the list of properties will vary with different versions of the Unicode Standard, there
may not be an exact correspondence between them and the list of properties defined in these Guidelines.

Usage examples for these elements are given below at 5.3. Annotating Characters and 5.4. Adding New
Characters. The gaiji module itself is formally defined in section 5.6. Module Character and Glyph Documentation
below. It declares the following additional elements:

<charDecl> (character declarations) provides information about nonstandard characters and glyphs.

<g> (character or glyph) represents a non-standard character or glyph.

@ref points to a description of the character or glyph intended.

The <charDecl> element is a member of the class model.encodingPart, and thus becomes available within
<encodingDesc> when this module is included in a schema. The <g> element is the only member of the class
model.gLike: this class is referenced as an alternative to plain text in almost every element which contains plain
text, thus permitting the <g> element also to appear at such places when this module is included in a schema.

The following elements may appear within a <charDecl> element:

<desc> (description) contains a brief description of the object documented by its parent element,
including its intended usage, purpose, or application where this is appropriate.

<char> (character) provides descriptive information about a character.
<glyph> (character glyph) provides descriptive information about a character glyph.

The <char> and <glyph> elements have similar contents and are used in similar ways, but their functions are
different. The <char> element is provided to define a character which is not available in the current document
character set, for whatever reason, as stated above. The <glyph> element is used to annotate a character that
has already been defined somewhere (either in the document character set, or through a <char> element) by
providing a specific glyph that shows how a character appeared in the original document. This is necessary
since Unicode code points refer not to a single, specific glyph shape of a character, but rather to a set of glyphs,
any of which may be used to render the code point in question; in some cases they can differ considerably.

The <glyph> element is provided for cases where the encoder wants to specify a specific glyph (or family
of glyphs) out of all possible glyphs. Unfortunately, due to the way Unicode has been defined, there are cases
where several glyphs that logically belong together have been given separate code points, especially in the blocks
defining East Asian characters. In such cases, <glyph> elements can also be used to express the view that these
apparently distinct characters are to be regarded as instances of the same character (see further 5.3. Annotating
Characters).

The Unicode Standard recommends naming conventions which should be followed strictly where the
intention is to annotate an existing Unicode character, and which may also be used as a model when creating

175

5. Representation of Non-standard Characters and Glyphs

new names for characters or glyphs?. For convenience of processing, the following distinct elements are
proposed for naming characters and glyphs:

<charName> (character name) contains the name of a character, expressed following Unicode
conventions.

<glyphName> (character glyph name) contains the name of a glyph, expressed following Unicode
conventions for character names.

Within both <char> and <glyph>, the following elements are available:
<gloss> identifies a phrase or word used to provide a gloss or definition for some other word or phrase.
<charProp> (character property) provides a name and value for some property of the parent character or
glyph.
<desc> (description) contains a brief description of the object documented by its parent element,
including its intended usage, purpose, or application where this is appropriate.

<mapping> (character mapping) contains one or more characters which are related to the parent character
or glyph in some respect, as specified by the type attribute.

<graphic/> indicates the location of an inline graphic, illustration, or figure.

Four of these elements (<gloss>, <desc>, <graphic>, and <remarks>) are defined by other TEI modules, and
their usage here is no different from their usage elsewhere. The <graphic> element, however, is used here only to
link to an image of the character or glyph under discussion, or to contain a representation of it in SVG. Several
<graphic> elements may be given, for example to provide images with different resolution, or in different
formats. The mimeType attribute which <graphic> acquires from its membership of the att.internetMedia class
may be used to specify the format of the image.

The <mapping> element is similar to the standard TEI <equiv> element. While the latter is used to express
correspondence relationships between TEI concepts or elements and those in other systems or ontologies,
the former is used to express any kind of relationship between the character or glyph under discussion and
characters or glyphs defined elsewhere. It may contain any Unicode character, or a <g> element linked to some
other <char> or <glyph> element, if, for example, the intention is to express an association between two non-
standard characters. The type of association is indicated by the type attribute, which may take such values as
exact for exact equivalences, uppercase for uppercase equivalences, lowercase for lowercase equivalences,
standardized for standardized forms, and simplified for simplified characters, etc., as in the following
example:

<charDecl>
<char xml:id="aenl">
<charName>LATIN LETTER ENLARGED SMALL A</charName>
<charProp>
<localName>entity</localName>
<value>aenl</value>
</charProp>
<mapping type="standardized">a</mapping>
</char>
</charDecl>

The mapping element may also be used to represent a mapping of the character or (more likely) glyph under
discussion onto a character from the private use area as in this example:

%It should be noted, however, that this naming convention cannot meaningfully be applied to East Asian characters; the typical Unicode descriptions
for these characters take the form ‘CJK Unified Ideograph U+4E00} where U+4E00 is simply the Unicode code point value of the character in question.
In cases where no Unicode code point exists, there is little hope of finding a name that helps to identify the character. Names should therefore be
constructed in a way meaningful to local practice, for example by using a reference number from a well-known character dictionary or a project-
specific serial number.

176

5.2. Markup Constructs for Representation of Characters and Glyphs

<charDecl>
<glyph xml:id="z103">
<glyphName>LATIN LETTER Z WITH TWO STROKES</glyphName>
<mapping type="standardized">Z</mapping>
<mapping type="PUA">U+E304</mapping>
</glyph>
</charDecl>

A more precise documentation of the properties of any character or glyph may be supplied using the generic
<charProp> element described in the next section. Despite its name, this element may be used for either
characters or glyphs.

5.2.1 Character Properties

The Unicode Standard documents ‘ideal’ characters, defined by reference to a number of properties (or attribute-
value pairs) which they are said to possess. For example, a lowercase letter is said to have the value L1 for
the property general-category. The Standard distinguishes between normative properties (i.e. properties
which form part of the definition of a given character), and informative or additional properties which are not
normative. It also allows for the addition of new properties, and (in some circumstances) alteration of the
values currently assigned to certain properties. When making such modifications, great care should be taken
not to override standard informative properties for characters which already exist in the Unicode Standard, as
documented in Freytag (2006).

The <charProp> element allows an encoder to supply information about a character or glyph. Where
the information concerned relates to a property which has already been identified in the Unicode Standard,
encoders are urged to use the appropriate Unicode property name.

The following elements are used to record character properties:

<unicodeName> (unicode property name) contains the name of a registered Unicode normative or
informative property.

<localName> (locally-defined property name) contains a locally defined name for some property.
<value> (value) contains a single value for some property, attribute, or other analysis.

For each property, the encoder must supply either a <unicodeName> or a <localName>, followed by a
<value>.

For convenience, we list here some of the normative character properties and their values. For full
information, refer to chapter 4 of The Unicode Standard, or the online documentation of the Unicode Character
Database.

general-category The general category (described in the Unicode Standard chapter 4 section 5) is an
assighment to some major classes and subclasses of characters. Suggested values for this property are
listed here:

Lu Letter, uppercase
Ll Letter, lowercase
Lt Letter, titlecase
Lm Letter, modifier
Lo Letter, other

Mn Mark, nonspacing

Mc Mark, spacing combining

177

5. Representation of Non-standard Characters and Glyphs

Me Mark, enclosing

Nd Number, decimal digit

N1 Number, letter

No Number, other

Pc Punctuation, connector

Pd Punctuation, dash

Ps Punctuation, open

Pe Punctuation, close

Pi Punctuation, initial quote

Pf Punctuation, final quote

Po Punctuation, other

Sm Symbol, math

Sc Symbol, currency

Sk Symbol, modifier

So Symbol, other

Zs Separator, space

Z1 Separator, line

Zp Separator, paragraph

Cc Other, control

Cf Other, format

Cs Other, surrogate

Co Other, private use

Cn Other, not assigned
directional-category This property applies to all Unicode characters. It governs the application of the

algorithm for bi-directional behaviour, as further specified in Unicode Annex 9, The Bidirectional
Algorithm. The following 19 different values are currently defined for this property in Davis et al (2006):

L left to right

LRE left to right embedding
LRO left to right override

R right to left

AL right to left Arabic

RLE right to left embedding
RLO right to left override

PDF Pop Directional Format
EN European Number

ES European Number Separator

ET European Number Terminator

178

5.2. Markup Constructs for Representation of Characters and Glyphs

AN Arabic Number
CS Common Number Separator
NSM Non-spacing Mark
BN Boundary Neutral
B Paragraph separator
S Segment separator
WS Whitespace
ON Other neutrals
canonical-combining-class This property exists for characters that are not used independently, but in
combination with other characters, for example the strokes making up CJK (Chinese, Japanese, and
Korean) characters. It records a class for these characters, which is used to determine how they interact

typographically. The following values are defined in the Unicode Standard 5.0: (see Unicode Character
Database: Canonical Combining Class Values)

0 Spacing, split, enclosing, reordrant, and Tibetan subjoined
1 Overlays and interior

7 Nuktas

8 Hiragana/Katakana voicing marks

9 Viramas

10 Start of fixed position classes

199 End of fixed position classes

200 Below left attached

202 Below attached

204 Below right attached

208 Left attached (reordrant around single base character)
210 Right attached

212 Above left attached

214 Above attached

216 Above right attached

218 Below left

220 Below

222 Below right

224 Left (reordrant around single base character)
226 Right

228 Above left

230 Above

232 Above right

233 Double below

234 Double above

179

http://unicode.org/Public/UNIDATA/UCD.html#Canonical_Combining_Class_Values
http://unicode.org/Public/UNIDATA/UCD.html#Canonical_Combining_Class_Values

5. Representation of Non-standard Characters and Glyphs

53

240 Below (iota subscript)

character-decomposition-mapping This property is defined for characters, which may be decomposed,
for example to a canonical form plus a typographic variation of some kind. For such characters the
Unicode standard specifies both a decomposition type and a decomposition mapping (i.e. another
Unicode character to which this one may be mapped in the way specified by the decomposition type).
The following types of mapping are defined in the Unicode Standard:

font A font variant (e.g. a blackletter form)

noBreak A no-break version of a space or hyphen
initial An initial presentation form (Arabic)

medial A medial presentation form (Arabic)

final A final presentation form (Arabic)

isolated An isolated presentation form (Arabic)

circle An encircled form

super A superscript form

sub A subscript form

vertical A vertical layout presentation form

wide A wide (or zenkaku) compatibility character
narrow A narrow (or hankaku) compatibility character
small A small variant form (CNS compatibility)
square A CJK squared font variant

fraction A vulgar fraction form

compat Otherwise-unspecified compatibility character

numeric-value This property applies for any character which expresses any kind of numeric value. Its value is
the intended value in decimal notation.

mirrored The mirrored character property is used to properly render characters such as U+0028, OPENING
PARENTHESIS independent of the text direction: it has the value Y (character is mirrored) or N (code is not
mirrored).

The Unicode Standard also defines a set of informative (but non-normative) properties for Unicode char-
acters. If encoders want to provide such properties, they may be included using the suggested Unicode
name, tagged using the <unicodeName> element. However, encoders may also supply other locally-defined
properties, which must be named using the <localName> element to distinguish them. If a Unicode name
exists for a given property, it should however always be preferred to a locally defined name. Locally defined
names should be used only for properties which are not specified by the Unicode Standard.

Annotating Characters

Annotation of a character becomes necessary when it is desired to distinguish it on the basis of certain aspects
(typically, its graphical appearance) only. In a manuscript, for example, where distinctly different forms of
the letter "r" can be recognized, it might be useful to distinguish them for analytic purposes, quite distinct
from the need to provide a accurate representation of the page. A digital facsimile, particularly one linked

to a transcribed and encoded version of the text, will always provide a superior visual representation (for

180

5.3. Annotating Characters

information on how to link a digital facsimile to a transcribed text see 11.1. Digital Facsimiles), but cannot be
used to support arguments based on the distribution of such different forms. Character annotation as described
here provides a solution to this problem.?

Assuming that we wish to distinguish the variant glyphs from the standard representation for the character
concerned, we will need to define distinct <glyph> elements, one for each of the forms of the letter we wish to
distinguish:

<charDecl>
<glyph xml:id="r1">
<glyphName>LATIN SMALL LETTER R WITH ONE FUNNY STROKE</glyphName>

<charProp>
<localName>entity</localName>
<value>rl</value>
</charProp>
<graphic url="rlimg.png"/>
</glyph>

<glyph xml:id="r2">
<glyphName>LATIN SMALL LETTER R WITH TWO FUNNY STROKES</glyphName>
<charProp>
<localName>entity</localName>
<value>r2</value>
</charProp>
<graphic url="r2img.png"/>
</glyph>
</charDecl>

n_n

With these definitions in place, occurrences of these two special "r"s in the text can be annotated using the

element <g>:

<p>Wo<g ref="#rl">r</g>ds in this
manusc<g ref="#r2">r</g>ipt are sometimes
written in a funny way.</p>

As can be seen in this example, the <glyph> element pointed to from the <g> element will be interpreted as
an annotation on the content of the element <g>. This mechanism can also be used to indicate ligatures, as in
the following example:

<p> ... <g ref="#Filig">Fi</g>lthy riches...</p>

<!-- 1in the charDecl -->

<glyph xml:id="Filig">
<glyphName>LATIN UPPER F AND LATIN LOWER I LIGATURE</glyphName>
<graphic url="Filig.png"/>

</glyph>

(In fact the Unicode Standard does provide a character to represent the Fi ligature; the encoder may however
prefer not to use it in order to simplify other text processing operations, such as indexing).

With this markup in place, it will be possible to write programs to analyze the distribution of the different
letters "r" as well as produce more ‘faithful’ renderings of the original. It will also be possible to produce
normalized versions by simply ignoring the annotation pointed to by the element <g>.

For brevity of encoding, it may be preferred to predefine internal entities such as the following:

3 It should be kept in mind that any kind of text encoding is an abstraction and an interpretation of the text at hand, which will not necessarily be
useful in reproducing an exact facsimile of the appearance of a manuscript.

181

5. Representation of Non-standard Characters and Glyphs

<!ENTITY rl '<g ref="#rl">r</g>' >
<!ENTITY r2 '<g ref="#r2">r</g>' >

which would enable the same material to be encoded as follows:

<p>Wo&rl;ds in this manusc&r2;ipt are
sometimes written in a funny way.</p>

The same technique may be used to represent particular abbreviation marks as well as to represent other
characters or glyphs. For example, if we believe that the r-with-one-funny-stroke is being used as an
abbreviation for receipt, this might be represented as follows:

<abbr>&rl;</abbr>

Note however that this technique employs markup objects to provide a link between a character in the
document and some annotation on that character. Therefore, it cannot be used in places where such markup
constructs are not allowed, notably in attribute values.

Since the need to use these constructs to annotate or define characters occurs frequently in Chinese, Korean,
and Japanese documents, here are some issues that are specific to these documents. There are two slightly
different versions of the problem. In the first case, due to the way Unicode is defined, there are occasions when
more than one glyph is defined for a character. In such an occasion, one might want to retain the character
as used, but add information in a way so that a normalizer (for search or indexing operations) could take
advantage of this information. To achieve this, we simply define within a <charDecl> element a <glyph> that
has two <mapping> elements, as shown here:

<charDecl>
<glyph xml:id="u8aaa">
<mapping type="Unicode">#fi</mapping>
<mapping type="orthographic">zi</mapping>
</glyph>
</charDecl>

The first of these <mapping>s, of type Unicode, simply maps our glyph to the code point where Unicode defined
it. The other one, of type Standard, encodes the fact that in our view, this glyph is a variation of the standard
character given in the content of the element. We could then use this <glyph> element's unique identifier u8aaa
to refer to it from within a text as follows.

<g ref="#uBaaa">#i</g>

A slightly different, but related problem occurs when we have multiple variants, none of which has been
defined in Unicode. In this case, we need to define one as a new character using <char>, and the others as

gl